Low Carbon Economy (LCE) Research Group, School of Chemical Engineering, Universiti Sains Malaysia, 14300, Nibong Tebal, Pulau Pinang, Malaysia.
Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, 47148, Iran.
Environ Sci Pollut Res Int. 2020 Dec;27(34):43011-43027. doi: 10.1007/s11356-020-10269-2. Epub 2020 Jul 28.
Several multi-walled carbon nanotubes supported Ni-Ce catalysts were synthesized, and their performance in carbon dioxide reforming of methane (CDRM) for syngas production was evaluated. The attachment of Ni-Ce nanoparticles to the functionalized carbon nanotube (fCNT) support was carried out using four synthesis routes, i.e., impregnation (I), sol-gel (S), co-precipitation (C), and hydrothermal (H) methods. Results indicated that synthesis method influences the properties of the NiCe/fCNT catalysts in terms of homogeneity of metal dispersion, size of crystallites, and metal-support interaction. The activity of the catalysts followed the order of NiCe/fCNT(H) > NiCe/fCNT(S) > NiCe/fCNT(C) > NiCe/fCNT(I). The NiCe/fCNT(H) catalyst exhibited the highest catalytic activity with CH and CO conversions of 92 and 96%, respectively, and resulted in syngas product with consistent H/CO ratio of 0.91 at reaction temperature of 800 °C without notable deactivation up to 30 h of reaction. Moreover, the growth of carbon on the spent catalyst was only 2% with deposition rate of 4.08 mg/g·h; this was plausibly due to the well-dispersed distribution of nanoparticles on fCNT surface and abundant presence of oxygenated groups on the catalyst surface.
几种多壁碳纳米管负载的 Ni-Ce 催化剂被合成出来,并评估了它们在甲烷二氧化碳重整(CDRM)生产合成气方面的性能。Ni-Ce 纳米粒子通过四种合成路线(浸渍(I)、溶胶-凝胶(S)、共沉淀(C)和水热(H))附着在功能化碳纳米管(fCNT)载体上。结果表明,合成方法影响 NiCe/fCNT 催化剂的性质,包括金属分散的均匀性、晶粒尺寸和金属-载体相互作用。催化剂的活性顺序为 NiCe/fCNT(H) > NiCe/fCNT(S) > NiCe/fCNT(C) > NiCe/fCNT(I)。NiCe/fCNT(H)催化剂在 800°C 的反应温度下表现出最高的催化活性,CH 和 CO 的转化率分别达到 92%和 96%,并得到了 H/CO 比为 0.91 的一致的合成气产物,在 30 小时的反应过程中没有明显的失活。此外,在失活催化剂上的碳生长仅为 2%,沉积速率为 4.08 mg/g·h;这可能是由于纳米粒子在 fCNT 表面上的良好分散分布和催化剂表面上丰富的含氧基团。