Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu City, China.
Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut.
J Neurophysiol. 2020 Sep 1;124(3):740-749. doi: 10.1152/jn.00358.2020. Epub 2020 Jul 29.
All inhalation anesthetics used clinically including isoflurane can suppress breathing; since this unwanted side effect can persist during the postoperative period and complicate patient recovery, there is a need to better understand how isoflurane affects cellular and molecular elements of respiratory control. Considering that astrocytes in a brainstem region known as the retrotrapezoid nucleus (RTN) contribute to the regulation of breathing in response to changes in CO/H (i.e., function as respiratory chemoreceptors), and astrocytes in other brain regions are highly sensitive to isoflurane, we wanted to determine whether and how RTN astrocytes respond to isoflurane. We found that RTN astrocytes in slices from neonatal rat pups (7-12 days postnatal) respond to clinically relevant levels of isoflurane by inhibition of a CO/H-sensitive Kir4.1/5.1-like conductance [50% effective concentration (EC) = 0.8 mM or ~1.7%]. We went on to confirm that similar levels of isoflurane (EC = 0.53 mM or 1.1%) inhibit recombinant Kir4.1/5.1 channels but not homomeric Kir4.1 channels expressed in HEK293 cells. We also found that exposure to CO/H occluded subsequent effects of isoflurane on both native and recombinant Kir4.1/5.1 currents. These results identify Kir4.1/5.1 channels in astrocytes as novel targets of isoflurane. These results suggest astrocyte Kir4.1/5.1 channels contribute to certain aspects of general anesthesia including altered respiratory control. An unwanted side effect of isoflurane anesthesia is suppression of breathing. Despite this clinical significance, effects of isoflurane on cellular and molecular elements of respiratory control are not well understood. Here, we show that isoflurane inhibits heteromeric Kir4.1/5.1 channels in a mammalian expression system and a Kir4.1/5.1-like conductance in astrocytes in a brainstem respiratory center. These results identify astrocyte Kir4.1/5.1 channels as novel targets of isoflurane and potential substrates for altered respiratory control during isoflurane anesthesia.
所有临床使用的吸入麻醉剂包括异氟醚都能抑制呼吸;由于这种不良反应可能会在术后期间持续存在并使患者恢复复杂化,因此需要更好地了解异氟醚如何影响呼吸控制的细胞和分子元素。考虑到脑桥中一个称为梯形核(retrotrapezoid nucleus, RTN)的区域中的星形胶质细胞有助于响应 CO/H 的变化调节呼吸(即,作为呼吸化学感受器发挥作用),并且其他脑区的星形胶质细胞对异氟醚高度敏感,我们想确定 RTN 星形胶质细胞是否以及如何对异氟醚产生反应。我们发现,来自新生大鼠幼崽(出生后 7-12 天)的脑片上的 RTN 星形胶质细胞对临床相关水平的异氟醚通过抑制 CO/H 敏感的 Kir4.1/5.1 样电导[50%有效浓度 (EC) = 0.8 mM 或约 1.7%]作出反应。我们接着证实,相似水平的异氟醚(EC = 0.53 mM 或 1.1%)抑制重组 Kir4.1/5.1 通道,但不抑制在 HEK293 细胞中表达的同源 Kir4.1 通道。我们还发现,暴露于 CO/H 会阻断异氟醚对天然和重组 Kir4.1/5.1 电流的后续作用。这些结果将星形胶质细胞中的 Kir4.1/5.1 通道确定为异氟醚的新靶标。这些结果表明星形胶质细胞 Kir4.1/5.1 通道有助于包括呼吸控制改变在内的全身麻醉的某些方面。异氟醚麻醉的一个不良反应是抑制呼吸。尽管具有这种临床意义,但异氟醚对呼吸控制的细胞和分子元素的影响尚未得到很好的理解。在这里,我们显示异氟醚在哺乳动物表达系统中抑制异源 Kir4.1/5.1 通道,并在呼吸中枢的星形胶质细胞中抑制 Kir4.1/5.1 样电导。这些结果将星形胶质细胞 Kir4.1/5.1 通道确定为异氟醚的新靶标,并且可能是异氟醚麻醉期间呼吸控制改变的潜在底物。