Suppr超能文献

含能碳硝基化合物撞击感度的理论预测

Theoretical prediction of the impact sensitivities of energetic C-nitro compounds.

作者信息

Chang Shuang-Jun, Bai Hai-Long, Ren Fu-de, Luo Xiang-Cheng, Xu Jun-Jie

机构信息

School of Environment and safety Engineering, North University of China, Taiyuan, 030051, China.

School of Chemical Engineering and Technology, North University of China, Taiyuan, 030051, China.

出版信息

J Mol Model. 2020 Jul 29;26(8):219. doi: 10.1007/s00894-020-04481-7.

Abstract

In order to design high-energetic and insensitive explosives, the frontier orbital energy gaps, surface electrostatic potentials, nitro group charges, bond dissociation energies (BDEs) of the C-NO trigger bonds, and intermolecular interactions obtained by the M06-2X/6-311++G(2d,p) method were quantitatively correlated with the experimental drop hammer potential energies of 10 typical C-nitro explosives. The changes of several information-theoretic quantities (ITQs) in the density functional reactivity theory were discussed upon the formation of complexes. The BDEs in the explosives with six-membered ring are larger than those with five-membered ring. The frontier orbital energy gaps of the compounds with benzene ring are larger than those with N-heterocycle. The models involving the intermolecular interaction energies and the energy gaps could be used to predict the impact sensitivity of the C-nitro explosives, while those involving ΔS, ΔI, and ΔS are invalid. With the more and more ITQs, the further studies are needed to seek for a good correlation between impact sensitivity measurements and ITQs for the energetic C-nitro compounds. The origin of sensitivity was revealed by the reduced density gradient method.

摘要

为了设计高能且钝感的炸药,通过M06-2X/6-311++G(2d,p)方法得到的前线轨道能隙、表面静电势、硝基电荷、C-NO触发键的键解离能(BDEs)以及分子间相互作用与10种典型C-硝基炸药的实验落锤势能进行了定量关联。讨论了在形成配合物时密度泛函反应性理论中几个信息理论量(ITQs)的变化。含六元环炸药中的BDEs大于含五元环炸药中的BDEs。含苯环化合物的前线轨道能隙大于含N-杂环化合物的前线轨道能隙。涉及分子间相互作用能和能隙的模型可用于预测C-硝基炸药的撞击感度,而涉及ΔS、ΔI和ΔS的模型无效。随着ITQs越来越多,需要进一步研究以寻找高能C-硝基化合物撞击感度测量与ITQs之间的良好关联。通过约化密度梯度方法揭示了感度的起源。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验