Suppr超能文献

隧道纳米管:胶质母细胞瘤异质性的桥梁和新的治疗靶点?

Tunneling nanotubes: A bridge for heterogeneity in glioblastoma and a new therapeutic target?

机构信息

Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, Minnesota.

出版信息

Cancer Rep (Hoboken). 2019 Dec;2(6):e1185. doi: 10.1002/cnr2.1185. Epub 2019 May 8.

Abstract

BACKGROUND

The concept of tumour heterogeneity is not novel but is fast becoming a paradigm by which to explain part of the highly recalcitrant nature of aggressive malignant tumours. Glioblastoma is a prime example of such difficult-to-treat, invasive, and incurable malignancies. With the advent of the post-genomic age and increased access to next-generation sequencing technologies, numerous publications have described the presence and extent of intratumoural and intertumoural heterogeneity present in glioblastoma. Moreover, there have been numerous reports more directly correlating the heterogeneity of glioblastoma to its refractory, reoccurring, and inevitably terminal nature. It is therefore prudent to consider the different forms of heterogeneity seen in glioblastoma and how to harness this understanding to better strategize novel therapeutic approaches. One of the most central questions of tumour heterogeneity is how these numerous different cell types (both tumour and non-tumour) in the tumour mass communicate.

RECENT FINDINGS

This chapter provides a brief review on the variable heterogeneity of glioblastoma, with a focus on cellular heterogeneity and on modalities of communication that can induce further molecular diversity within the complex and ever-evolving tumour microenvironment. We provide particular emphasis on the emerging role of actin-based cellular conduits called tunnelling nanotubes (TNTs) and tumour microtubes (TMs) and outline the perceived current problems in the field that need to be resolved before pharmacological targeting of TNTs can become a reality.

CONCLUSIONS

We conclude that TNTs and TMs provide a new and exciting avenue for the therapeutic targeting of glioblastoma and that numerous inroads have already made into TNT and TM biology. However, to target TMs and TNTs, several advances must be made before this aim can become a reality.

摘要

背景

肿瘤异质性的概念并不新鲜,但它正迅速成为解释侵袭性恶性肿瘤高度难治性部分的范例。胶质母细胞瘤就是这种难以治疗、侵袭性和无法治愈的恶性肿瘤的一个典型例子。随着后基因组时代的到来和下一代测序技术的广泛应用,许多出版物已经描述了胶质母细胞瘤中存在的肿瘤内和肿瘤间异质性及其程度。此外,还有许多报道更直接地将胶质母细胞瘤的异质性与其难治性、复发性和不可避免的终末性质相关联。因此,有必要考虑胶质母细胞瘤中存在的不同形式的异质性,以及如何利用这种理解来更好地制定新的治疗方法。肿瘤异质性的一个最核心问题是肿瘤内的这些不同细胞类型(包括肿瘤细胞和非肿瘤细胞)如何进行通讯。

最近的发现

本章简要回顾了胶质母细胞瘤的可变异质性,重点关注细胞异质性以及可以在复杂且不断演变的肿瘤微环境中诱导进一步分子多样性的通讯模式。我们特别强调了新兴的肌动蛋白细胞管道,称为隧道纳米管(TNTs)和肿瘤微管(TMs)的作用,并概述了该领域目前需要解决的问题,这些问题需要解决才能使 TNTs 的药理学靶向成为现实。

结论

我们得出结论,TNTs 和 TMs 为胶质母细胞瘤的治疗靶向提供了一个新的令人兴奋的途径,并且已经在 TNT 和 TM 生物学方面取得了许多进展。然而,要靶向 TMs 和 TNTs,在这一目标成为现实之前,还需要取得几项进展。

相似文献

1
Tunneling nanotubes: A bridge for heterogeneity in glioblastoma and a new therapeutic target?
Cancer Rep (Hoboken). 2019 Dec;2(6):e1185. doi: 10.1002/cnr2.1185. Epub 2019 May 8.
2
Do tunneling nanotubes drive chemoresistance in solid tumors and other malignancies?
Biochem Soc Trans. 2024 Aug 28;52(4):1757-1764. doi: 10.1042/BST20231364.
3
Novel approaches for glioblastoma treatment: Focus on tumor heterogeneity, treatment resistance, and computational tools.
Cancer Rep (Hoboken). 2019 Dec;2(6):e1220. doi: 10.1002/cnr2.1220. Epub 2019 Nov 11.
4
Tunneling nanotubes evoke pericyte/endothelial communication during normal and tumoral angiogenesis.
Fluids Barriers CNS. 2018 Oct 5;15(1):28. doi: 10.1186/s12987-018-0114-5.
6
Biomimetic models to examine microenvironmental regulation of glioblastoma stem cells.
Cancer Lett. 2018 Aug 10;429:41-53. doi: 10.1016/j.canlet.2018.05.007. Epub 2018 May 8.
9
Modelling glioblastoma tumour-host cell interactions using adult brain organotypic slice co-culture.
Dis Model Mech. 2018 Feb 22;11(2):dmm031435. doi: 10.1242/dmm.031435.
10
Tunneling Nanotubes: A Versatile Target for Cancer Therapy.
Curr Cancer Drug Targets. 2018;18(6):514-521. doi: 10.2174/1568009618666171129222637.

引用本文的文献

1
Interplay between tunneling nanotubes and Wnt Signaling: Insights into cytoskeletal regulation and therapeutic potential.
Biochem Biophys Rep. 2025 May 27;43:102065. doi: 10.1016/j.bbrep.2025.102065. eCollection 2025 Sep.
3
Tunneling Nanotubes: The Cables for Viral Spread and Beyond.
Results Probl Cell Differ. 2024;73:375-417. doi: 10.1007/978-3-031-62036-2_16.
4
Potential Mechanism and Involvement of p120-Catenin in the Malignant Biology of Glioma.
J Korean Neurosurg Soc. 2024 Nov;67(6):609-621. doi: 10.3340/jkns.2024.0053. Epub 2024 Jul 3.
7
Tunneling Nanotube: An Enticing Cell-Cell Communication in the Nervous System.
Biology (Basel). 2023 Sep 27;12(10):1288. doi: 10.3390/biology12101288.
8
Mitochondria Transfer from Mesenchymal Stem Cells Confers Chemoresistance to Glioblastoma Stem Cells through Metabolic Rewiring.
Cancer Res Commun. 2023 Jun 14;3(6):1041-1056. doi: 10.1158/2767-9764.CRC-23-0144. eCollection 2023 Jun.
10
Adopted neoplastic cells and the consequences of their existence.
Oncotarget. 2023 Apr 14;14:321-341. doi: 10.18632/oncotarget.28408.

本文引用的文献

1
Correlative cryo-electron microscopy reveals the structure of TNTs in neuronal cells.
Nat Commun. 2019 Jan 21;10(1):342. doi: 10.1038/s41467-018-08178-7.
2
Tunneling nanotubes, a novel mode of tumor cell-macrophage communication in tumor cell invasion.
J Cell Sci. 2019 Feb 11;132(3):jcs223321. doi: 10.1242/jcs.223321.
4
Direct Observation of Tunneling Nanotubes within Human Mesenchymal Stem Cell Spheroids.
J Phys Chem B. 2018 Nov 1;122(43):9920-9926. doi: 10.1021/acs.jpcb.8b07305. Epub 2018 Oct 23.
5
Cellular and Molecular Networking Within the Ecosystem of Cancer Cell Communication via Tunneling Nanotubes.
Front Cell Dev Biol. 2018 Oct 2;6:95. doi: 10.3389/fcell.2018.00095. eCollection 2018.
6
Tunneling nanotubes evoke pericyte/endothelial communication during normal and tumoral angiogenesis.
Fluids Barriers CNS. 2018 Oct 5;15(1):28. doi: 10.1186/s12987-018-0114-5.
7
Microglia/Astrocytes-Glioblastoma Crosstalk: Crucial Molecular Mechanisms and Microenvironmental Factors.
Front Cell Neurosci. 2018 Aug 3;12:235. doi: 10.3389/fncel.2018.00235. eCollection 2018.
8
Interactions between tumor-associated macrophages and tumor cells in glioblastoma: unraveling promising targeted therapies.
Expert Rev Neurother. 2018 Sep;18(9):729-737. doi: 10.1080/14737175.2018.1510321. Epub 2018 Aug 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验