Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia.
U.S. Geological Survey, Southwest Biological Science Center, Moab, UT, USA.
Glob Chang Biol. 2020 Oct;26(10):6003-6014. doi: 10.1111/gcb.15232. Epub 2020 Jul 30.
The capture and use of water are critically important in drylands, which collectively constitute Earth's largest biome. Drylands will likely experience lower and more unreliable rainfall as climatic conditions change over the next century. Dryland soils support a rich community of microphytic organisms (biocrusts), which are critically important because they regulate the delivery and retention of water. Yet despite their hydrological significance, a global synthesis of their effects on hydrology is lacking. We synthesized 2,997 observations from 109 publications to explore how biocrusts affected five hydrological processes (times to ponding and runoff, early [sorptivity] and final [infiltration] stages of water flow into soil, and the rate or volume of runoff) and two hydrological outcomes (moisture storage, sediment production). We found that increasing biocrust cover reduced the time for water to pond on the surface (-40%) and commence runoff (-33%), and reduced infiltration (-34%) and sediment production (-68%). Greater biocrust cover had no significant effect on sorptivity or runoff rate/amount, but increased moisture storage (+14%). Infiltration declined most (-56%) at fine scales, and moisture storage was greatest (+36%) at large scales. Effects of biocrust type (cyanobacteria, lichen, moss, mixed), soil texture (sand, loam, clay), and climatic zone (arid, semiarid, dry subhumid) were nuanced. Our synthesis provides novel insights into the magnitude, processes, and contexts of biocrust effects in drylands. This information is critical to improve our capacity to manage dwindling dryland water supplies as Earth becomes hotter and drier.
在干旱地区,水的捕获和利用至关重要,干旱地区共同构成了地球上最大的生物群落。在未来一个世纪,随着气候条件的变化,干旱地区的降雨量可能会减少,而且更不可靠。旱地土壤支持着丰富的微生物有机群(生物结皮),它们在调节水的输送和保持方面至关重要。尽管它们具有水文意义,但它们对水文的影响缺乏全球综合分析。我们综合了 109 篇出版物中的 2997 个观测结果,以探讨生物结皮如何影响五个水文过程(积水和径流时间、水流进入土壤的早期[吸水性]和最终[入渗]阶段以及径流的速度或体积)和两个水文结果(水分储存、泥沙产生)。我们发现,生物结皮覆盖度的增加减少了水在表面上积水的时间(减少 40%)和开始径流的时间(减少 33%),并减少了入渗(减少 34%)和泥沙产生(减少 68%)。生物结皮覆盖度的增加对吸水性或径流率/量没有显著影响,但增加了水分储存(增加 14%)。在细小尺度上,入渗下降幅度最大(减少 56%),而在大尺度上,水分储存最大(增加 36%)。生物结皮类型(蓝藻、地衣、苔藓、混合)、土壤质地(沙、壤土、粘土)和气候带(干旱、半干旱、干燥的亚湿润)的影响各不相同。我们的综合分析提供了关于干旱地区生物结皮影响的规模、过程和背景的新见解。随着地球变得更热、更干燥,这些信息对于提高我们管理日益减少的旱地水资源的能力至关重要。