Espejo Rafael, Mestre Guillermo, Postigo Fernando, Lumbreras Sara, Ramos Andres, Huang Tao, Bompard Ettore
ICAI, Instituto de Investigación Tecnológica, Universidad Pontificia Comillas, Madrid, Spain.
Dipartmento Energia, Politecnico di Torino, Turin, Italy.
Sci Rep. 2020 Jul 30;10(1):12884. doi: 10.1038/s41598-020-69795-1.
The characterization of topology is crucial in understanding network evolution and behavior. This paper presents an innovative approach, the GHuST framework to describe complex-network topology from graphlet decomposition. This new framework exploits the local information provided by graphlets to give a global explanation of network topology. The GHuST framework is comprised of 12 metrics that analyze how 2- and 3-node graphlets shape the structure of networks. The main strengths of the GHuST framework are enhanced topological description, size independence, and computational simplicity. It allows for straight comparison among different networks disregarding their size. It also reduces the complexity of graphlet counting, since it does not use 4- and 5-node graphlets. The application of the novel framework to a large set of networks shows that it can classify networks of distinct nature based on their topological properties. To ease network classification and enhance the graphical representation of them, we reduce the 12 dimensions to their main principal components. Furthermore, the 12 dimensions are easily interpretable. This enables the connection between complex-network analyses and diverse real applications.
拓扑结构的表征对于理解网络演化和行为至关重要。本文提出了一种创新方法,即GHuST框架,用于从小图分解描述复杂网络拓扑。这个新框架利用小图提供的局部信息对网络拓扑进行全局解释。GHuST框架由12个指标组成,这些指标分析2节点和3节点小图如何塑造网络结构。GHuST框架的主要优势在于增强的拓扑描述、规模独立性和计算简便性。它允许在不同网络之间进行直接比较,而无需考虑它们的规模。它还降低了小图计数的复杂性,因为它不使用4节点和5节点小图。将这个新框架应用于大量网络表明,它可以根据拓扑属性对不同性质的网络进行分类。为了便于网络分类并增强其图形表示,我们将12维数据降至其主要主成分。此外,这12个维度易于解释。这使得复杂网络分析与各种实际应用之间能够建立联系。