Bourret S Michelle, Kwicklis Edward M, Harp Dylan R, Ortiz John P, Stauffer Philip H
Computational Earth Science, Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
Computational Earth Science, Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
J Environ Radioact. 2020 Oct;222:106297. doi: 10.1016/j.jenvrad.2020.106297. Epub 2020 Jul 30.
An underground nuclear explosion (UNE) generates radioactive gases that can be transported through fractures to the ground surface over timescales of hours to months. If detected, the presence of particular short-lived radionuclides in the gas can provide strong evidence that a recent UNE has occurred. By drawing comparisons between sixteen similar historical U.S. UNEs where radioactive gas was or was not detected, we identified factors that control the occurrence and timing of breakthrough at the ground surface. The factors that we evaluated include the post-test atmospheric conditions, local geology, and surface geology at the UNE sites. The UNEs, all located on Pahute Mesa on the Nevada National Security Site (NNSS), had the same announced yield range (20-150 kt), similar burial depths in the unsaturated zone, and were designed and performed by the same organization during the mid-to-late 1980s. Results of the analysis indicate that breakthrough at the ground surface is largely controlled by a combination of the post-UNE barometric pressure changes in the months following the UNE, and the volume of air-filled pore space above the UNE. Conceptually simplified numerical models of each of the 16 historical UNEs that include these factors successfully predict the occurrence (5 of the UNEs) or lack of occurrence (remaining 11 UNEs) of post-UNE gas seepage to the ground surface. However, the data analysis and modeling indicates that estimates of the meteorological conditions and of the post-UNE, site-specific subsurface environment including air-filled porosity, in combination, may be necessary to successfully predict late-time detectable gas breakthrough for a suspected UNE site.
地下核爆炸会产生放射性气体,这些气体可在数小时至数月的时间尺度内通过裂缝传输至地面。如果检测到,气体中特定短寿命放射性核素的存在可提供有力证据,证明近期发生了地下核爆炸。通过比较美国16次类似的历史地下核爆炸(其中有的检测到了放射性气体,有的未检测到),我们确定了控制气体突破至地面的发生及时间的因素。我们评估的因素包括试验后的大气条件、当地地质情况以及地下核爆炸地点的地表地质情况。这些地下核爆炸均位于内华达国家安全 site(NNSS)的帕胡特台地,公布的产量范围相同(20 - 150千吨),在非饱和带的埋藏深度相似,并且是由同一组织在20世纪80年代中后期设计并实施的。分析结果表明,地面的气体突破在很大程度上受地下核爆炸后数月内气压变化以及地下核爆炸上方空气填充孔隙空间体积的共同控制。包含这些因素的16次历史地下核爆炸中每一次的概念简化数值模型都成功预测了地下核爆炸后气体向地面渗透的发生情况(16次中的5次)或未发生情况(其余11次)。然而,数据分析和建模表明,结合气象条件以及地下核爆炸后特定地点的地下环境(包括空气填充孔隙率)的估计,对于成功预测疑似地下核爆炸地点后期可检测到的气体突破可能是必要的。