Suppr超能文献

使用月度和短期数据估计资本资产定价模型是一个好的选择吗?

Is estimating the Capital Asset Pricing Model using monthly and short-horizon data a good choice?

作者信息

Pham Chinh Duc, Phuoc Le Tan

机构信息

University of Economics and Law, Vietnam National University-Hochiminh/VNU-HCM, Viet Nam.

Becamex Business School - Eastern International University, Viet Nam.

出版信息

Heliyon. 2020 Jul 12;6(7):e04339. doi: 10.1016/j.heliyon.2020.e04339. eCollection 2020 Jul.

Abstract

This research argued for estimating the Capital Asset Pricing Model (CAPM) using daily and medium-horizon data over monthly and short horizon-data. Using a Gibbs sample, the Bayesian framework via both parametric and non-parametric Bayes estimators, confidence interval approach, and six data sets (two daily, two weekly, and two monthly data) from a sample of 150 randomly selected S&P 500 stocks from 2007 - 2019, the empirical results showed that the CAPM using daily data yielded a statistically significant higher model fit and smaller Beta standard deviation, model error, and Alpha compared with monthly data. The CAPM using medium-horizon data yielded a statistically significant higher model fit, smaller Beta standard deviation and Alpha, and much less zeroed Betas compared with short-horizon data. These findings show 1) daily data is more reliable and efficient, has higher forecasting power, and fits better with the assumption of market efficiency compared with monthly data. 2) Medium-horizon data is more reliable and efficient, has more explanatory power, and fits better with the assumption of market efficiency compared with monthly data. Therefore, these findings challenge the common practices of using monthly (quarterly/annually) and short-horizon data among the practitioners and researchers in asset pricing work.

摘要

本研究主张使用日数据和中期数据来估计资本资产定价模型(CAPM),而非月度数据和短期数据。通过吉布斯抽样,利用参数和非参数贝叶斯估计量的贝叶斯框架、置信区间方法以及来自2007年至2019年随机选取的150只标准普尔500指数股票样本的六个数据集(两个日数据、两个周数据和两个月数据),实证结果表明,与月度数据相比,使用日数据的CAPM产生了统计上显著更高的模型拟合度,以及更小的贝塔标准差、模型误差和阿尔法。与短期数据相比,使用中期数据的CAPM产生了统计上显著更高的模型拟合度、更小的贝塔标准差和阿尔法,且零贝塔的情况要少得多。这些发现表明:1)与月度数据相比,日数据更可靠、更有效,具有更高的预测能力,并且更符合市场效率假设。2)与月度数据相比,中期数据更可靠、更有效,具有更强的解释力,并且更符合市场效率假设。因此,这些发现对资产定价工作中从业者和研究人员使用月度(季度/年度)和短期数据的常见做法提出了挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ef2/7384329/65613e138e6a/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验