Suppr超能文献

新冠病毒RNA基因组中28 kDa移码刺激元件的冷冻电子显微镜及探索性反义靶向研究

Cryo-electron Microscopy and Exploratory Antisense Targeting of the 28-kDa Frameshift Stimulation Element from the SARS-CoV-2 RNA Genome.

作者信息

Zhang Kaiming, Zheludev Ivan N, Hagey Rachel J, Wu Marie Teng-Pei, Haslecker Raphael, Hou Yixuan J, Kretsch Rachael, Pintilie Grigore D, Rangan Ramya, Kladwang Wipapat, Li Shanshan, Pham Edward A, Bernardin-Souibgui Claire, Baric Ralph S, Sheahan Timothy P, D Souza Victoria, Glenn Jeffrey S, Chiu Wah, Das Rhiju

出版信息

bioRxiv. 2020 Jul 20:2020.07.18.209270. doi: 10.1101/2020.07.18.209270.

Abstract

Drug discovery campaigns against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) are beginning to target the viral RNA genome . The frameshift stimulation element (FSE) of the SARS-CoV-2 genome is required for balanced expression of essential viral proteins and is highly conserved, making it a potential candidate for antiviral targeting by small molecules and oligonucleotides . To aid global efforts focusing on SARS-CoV-2 frameshifting, we report exploratory results from frameshifting and cellular replication experiments with locked nucleic acid (LNA) antisense oligonucleotides (ASOs), which support the FSE as a therapeutic target but highlight difficulties in achieving strong inactivation. To understand current limitations, we applied cryogenic electron microscopy (cryo-EM) and the Ribosolve pipeline to determine a three-dimensional structure of the SARS-CoV-2 FSE, validated through an RNA nanostructure tagging method. This is the smallest macromolecule (88 nt; 28 kDa) resolved by single-particle cryo-EM at subnanometer resolution to date. The tertiary structure model, defined to an estimated accuracy of 5.9 Å, presents a topologically complex fold in which the 5' end threads through a ring formed inside a three-stem pseudoknot. Our results suggest an updated model for SARS-CoV-2 frameshifting as well as binding sites that may be targeted by next generation ASOs and small molecules.

摘要

针对严重急性呼吸综合征冠状病毒2(SARS-CoV-2)的药物研发活动已开始将病毒RNA基因组作为靶点。SARS-CoV-2基因组的移码刺激元件(FSE)对于病毒必需蛋白的平衡表达至关重要,且高度保守,这使其成为小分子和寡核苷酸抗病毒靶向的潜在候选靶点。为助力全球针对SARS-CoV-2移码的研究工作,我们报告了使用锁核酸(LNA)反义寡核苷酸(ASO)进行移码和细胞复制实验的探索性结果,这些结果支持将FSE作为治疗靶点,但也凸显了实现强效失活的困难。为了解当前的局限性,我们应用低温电子显微镜(cryo-EM)和Ribosolve流程来确定SARS-CoV-2 FSE的三维结构,并通过一种RNA纳米结构标记方法进行了验证。这是迄今为止通过单颗粒低温电子显微镜在亚纳米分辨率下解析出的最小大分子(88 nt;28 kDa)。确定的三级结构模型估计精度为5.9 Å,呈现出一种拓扑复杂的折叠结构,其中5'端穿过一个在三链假结内部形成的环。我们的结果为SARS-CoV-2移码以及下一代ASO和小分子可能靶向的结合位点提出了一个更新的模型。

相似文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验