Université de Paris, BFA Unit of Functional and Adaptative Biology, UMR 8251, CNRS, Paris F-75013, France.
Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette cedex 91198, France.
Hum Mol Genet. 2020 Oct 10;29(17):2831-2844. doi: 10.1093/hmg/ddaa170.
Friedreich ataxia (FA) is caused by GAA repeat expansions in the first intron of FXN, the gene encoding frataxin, which results in decreased gene expression. Thanks to the high degree of frataxin conservation, the Drosophila melanogaster fruitfly appears as an adequate animal model to study this disease and to evaluate therapeutic interventions. Here, we generated a Drosophila model of FA with CRISPR/Cas9 insertion of approximately 200 GAA in the intron of the fly frataxin gene fh. These flies exhibit a developmental delay and lethality associated with decreased frataxin expression. We were able to bypass preadult lethality using genetic tools to overexpress frataxin only during the developmental period. These frataxin-deficient adults are short-lived and present strong locomotor defects. RNA-Seq analysis identified deregulation of genes involved in amino-acid metabolism and transcriptomic signatures of oxidative stress. In particular, we observed a progressive increase of Tspo expression, fully rescued by adult frataxin expression. Thus, Tspo expression constitutes a molecular marker of the disease progression in our fly model and might be of interest in other animal models or in patients. Finally, in a candidate drug screening, we observed that N-acetyl cysteine improved the survival, locomotor function, resistance to oxidative stress and aconitase activity of frataxin-deficient flies. Therefore, our model provides the opportunity to elucidate in vivo, the protective mechanisms of this molecule of therapeutic potential. This study also highlights the strength of the CRISPR/Cas9 technology to introduce human mutations in endogenous orthologous genes, leading to Drosophila models of human diseases with improved physiological relevance.
弗里德赖希共济失调(FA)是由 FXN 基因第一内含子中的 GAA 重复扩增引起的,该基因编码 frataxin,导致基因表达减少。由于 frataxin 具有高度保守性,黑腹果蝇作为研究这种疾病和评估治疗干预措施的合适动物模型。在这里,我们通过 CRISPR/Cas9 在果蝇 frataxin 基因 fh 的内含子中插入大约 200 个 GAA,生成了 FA 的果蝇模型。这些果蝇表现出发育迟缓,并伴有 frataxin 表达减少的致死性。我们能够使用遗传工具绕过成虫前的致死性,仅在发育期间过表达 frataxin。这些缺乏 frataxin 的成虫寿命短,表现出强烈的运动缺陷。RNA-Seq 分析鉴定出参与氨基酸代谢的基因和氧化应激的转录组特征的失调。特别是,我们观察到 Tspo 表达逐渐增加,过表达 frataxin 可完全挽救。因此,Tspo 表达构成了我们果蝇模型中疾病进展的分子标志物,可能在其他动物模型或患者中具有研究意义。最后,在候选药物筛选中,我们观察到 N-乙酰半胱氨酸可提高缺乏 frataxin 的果蝇的存活率、运动功能、对氧化应激的抗性和 aconitase 活性。因此,我们的模型提供了在体内阐明该分子治疗潜力的保护机制的机会。本研究还强调了 CRISPR/Cas9 技术在引入人类突变的内源性同源基因方面的优势,为具有改善的生理相关性的人类疾病的果蝇模型提供了可能性。