Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA.
Pharmacology Graduate Program, Weill Cornell Medical College, New York, NY, 10065, USA.
Adv Biosyst. 2020 Sep;4(9):e2000143. doi: 10.1002/adbi.202000143. Epub 2020 Aug 3.
This report examines how sensing of substrate topography can be used to modulate T cell activation, a key coordinating step in the adaptive immune response. Inspired by the native T cell-antigen presenting cell interface, micrometer scale pits with varying depth are fabricated into planar substrates. Primary CD4 T cells extend actin-rich protrusions into the micropits. T cell activation, reflected in secretion of cytokines interleukin-2 and interferon gamma, is sensitive to the micropit depth. Surprisingly, arrays of micropits with 4 μm depth enhance activation compared to flat substrates but deeper micropits are less effective at increasing cell response, revealing a biphasic dependence in activation as a function of feature dimensions. Inhibition of cell contractility abrogates the enhanced activation associated with the micropits. In conclusion, this report demonstrates that the 3D, microscale topography can be used to enhance T cell activation, an ability that most directly can be used to improve production of these cells for immunotherapy.
本报告探讨了如何利用基底形貌感应来调节 T 细胞激活,这是适应性免疫反应中的一个关键协调步骤。受天然 T 细胞-抗原呈递细胞界面的启发,将具有不同深度的微米级别的凹坑制作到平面基底上。原代 CD4 T 细胞将富含肌动蛋白的突起延伸到微坑里。细胞因子白细胞介素 2 和干扰素 γ 的分泌反映了 T 细胞的激活,而这种激活对微坑的深度敏感。令人惊讶的是,与平面基底相比,深度为 4 μm 的微坑阵列增强了激活,但更深的微坑在增加细胞反应方面效果较差,这表明激活与特征尺寸之间存在双相依赖性。细胞收缩性的抑制消除了与微坑相关的增强激活。总之,本报告表明,3D 微尺度形貌可用于增强 T 细胞激活,这种能力最直接地可用于提高这些细胞用于免疫治疗的产量。