Suppr超能文献

医疗保健领域的语音技术:机遇、挑战与现状

Speech Technology for Healthcare: Opportunities, Challenges, and State of the Art.

作者信息

Latif Siddique, Qadir Junaid, Qayyum Adnan, Usama Muhammad, Younis Shahzad

出版信息

IEEE Rev Biomed Eng. 2021;14:342-356. doi: 10.1109/RBME.2020.3006860. Epub 2021 Jan 22.

Abstract

Speech technology is not appropriately explored even though modern advances in speech technology-especially those driven by deep learning (DL) technology-offer unprecedented opportunities for transforming the healthcare industry. In this paper, we have focused on the enormous potential of speech technology for revolutionising the healthcare domain. More specifically, we review the state-of-the-art approaches in automatic speech recognition (ASR), speech synthesis or text to speech (TTS), and health detection and monitoring using speech signals. We also present a comprehensive overview of various challenges hindering the growth of speech-based services in healthcare. To make speech-based healthcare solutions more prevalent, we discuss open issues and suggest some possible research directions aimed at fully leveraging the advantages of other technologies for making speech-based healthcare solutions more effective.

摘要

尽管语音技术的现代进展——尤其是那些由深度学习(DL)技术驱动的进展——为变革医疗行业提供了前所未有的机遇,但语音技术尚未得到充分探索。在本文中,我们重点关注了语音技术在彻底改变医疗领域方面的巨大潜力。更具体地说,我们回顾了自动语音识别(ASR)、语音合成或文本转语音(TTS)以及使用语音信号进行健康检测和监测方面的最新方法。我们还全面概述了阻碍医疗保健中基于语音的服务发展的各种挑战。为了使基于语音的医疗保健解决方案更普遍,我们讨论了开放性问题,并提出了一些可能的研究方向,旨在充分利用其他技术的优势,使基于语音的医疗保健解决方案更有效。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验