IEEE Trans Haptics. 2020 Jul-Sep;13(3):483-492. doi: 10.1109/TOH.2020.3013287. Epub 2020 Jul 30.
One well-known class of surface haptic devices that we have called Tactile Pattern Displays (TPaDs) uses ultrasonic transverse vibrations of a touch surface to modulate fingertip friction. This article addresses the power consumption of glass TPaDs, which is an important consideration in the context of mobile touchscreens. In particular, based on existing ultrasonic friction reduction models, we consider how the mechanical properties (density and Young's modulus) and thickness of commonly-used glass formulations affect TPaD performance, namely the relation between its friction reduction ability and its real power consumption. Experiments performed with eight types of TPaDs and an electromechanical model for the fingertip-TPaD system indicate: 1) TPaD performance decreases as glass thickness increases; 2) TPaD performance increases as the Young's modulus and density of glass decrease; and 3) real power consumption of a TPaD decreases as the contact force increases. Proper applications of these results can lead to significant increases in TPaD performance.
我们称之为触觉模式显示器(TPaD)的一类知名表面触觉设备使用触摸表面的超声横向振动来调节指尖摩擦。本文针对玻璃 TPaD 的功耗问题展开讨论,这在移动触摸屏的背景下是一个重要的考虑因素。具体来说,基于现有的超声摩擦降低模型,我们考虑了常用玻璃配方的机械性能(密度和杨氏模量)和厚度如何影响 TPaD 的性能,即其摩擦降低能力与其实际功耗之间的关系。通过对八种 TPaD 进行实验以及对指尖 TPaD 系统的机电模型进行分析,我们得出了以下结论:1)TPaD 的性能随玻璃厚度的增加而降低;2)TPaD 的性能随玻璃的杨氏模量和密度的降低而增加;3)TPaD 的实际功耗随接触力的增加而减小。适当应用这些结果可以显著提高 TPaD 的性能。