Suppr超能文献

炎症诱导的 PINCH 表达导致神经元中的肌动蛋白解聚和线粒体定位异常。

Inflammation-induced PINCH expression leads to actin depolymerization and mitochondrial mislocalization in neurons.

机构信息

Department of Neurosciences and Center for Neurovirology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.

Department of Microbiology, Bharathidasan University, Tiruchirappalli, 620024, India.

出版信息

Transl Neurodegener. 2020 Aug 3;9(1):32. doi: 10.1186/s40035-020-00211-4.

Abstract

BACKGROUND

Diseases and disorders with a chronic neuroinflammatory component are often linked with changes in brain metabolism. Among neurodegenerative disorders, people living with human immunodeficiency virus (HIV) and Alzheimer's disease (AD) are particularly vulnerable to metabolic disturbances, but the mechanistic connections of inflammation, neurodegeneration and bioenergetic deficits in the central nervous system (CNS) are poorly defined. The particularly interesting new cysteine histidine-rich-protein (PINCH) is nearly undetectable in healthy mature neurons, but is robustly expressed in tauopathy-associated neurodegenerative diseases including HIV infection and AD. Although robust PINCH expression has been reported in neurons in the brains of patients with HIV and AD, the molecular mechanisms and cellular consequences of increased PINCH expression in CNS disease remain largely unknown.

METHODS

We investigated the regulatory mechanisms responsible for PINCH protein-mediated changes in bioenergetics, mitochondrial subcellular localization and bioenergetic deficits in neurons exposed to physiological levels of TNFα or the HIV protein Tat. Changes in the PINCH-ILK-Parvin (PIP) complex association with cofilin and TESK1 were assessed to identify factors responsible for actin depolymerization and mitochondrial mislocalization. Lentiviral and pharmacological inhibition experiments were conducted to confirm PINCH specificity and to reinstate proper protein-protein complex communication.

RESULTS

We identified MEF2A as the PINCH transcription factor in neuroinflammation and determined the biological consequences of increased PINCH in neurons. TNFα-mediated activation of MEF2A via increased cellular calcium induced PINCH, leading to disruption of the PIP ternary complex, cofilin activation by TESK1 inactivation, and actin depolymerization. The disruption of actin led to perinuclear mislocalization of mitochondria by destabilizing the kinesin-dependent mitochondrial transport machinery, resulting in impaired neuronal metabolism. Blocking TNFα-induced PINCH expression preserved mitochondrial localization and maintained metabolic functioning.

CONCLUSIONS

This study reported for the first time the mechanistic and biological consequences of PINCH expression in CNS neurons in diseases with a chronic neuroinflammation component. Our findings point to the maintenance of PINCH at normal physiological levels as a potential new therapeutic target for neurodegenerative diseases with impaired metabolisms.

摘要

背景

具有慢性神经炎症成分的疾病和障碍通常与大脑代谢变化有关。在神经退行性疾病中,感染人类免疫缺陷病毒 (HIV) 和阿尔茨海默病 (AD) 的人特别容易受到代谢紊乱的影响,但中枢神经系统 (CNS) 中炎症、神经退行性变和生物能量缺陷的机制联系还不清楚。特别有趣的新半胱氨酸组氨酸丰富蛋白 (PINCH) 在健康成熟神经元中几乎检测不到,但在包括 HIV 感染和 AD 在内的tau 病相关神经退行性疾病中强烈表达。尽管在 HIV 和 AD 患者的大脑中神经元中已经报道了强烈的 PINCH 表达,但 CNS 疾病中增加的 PINCH 表达的分子机制和细胞后果在很大程度上仍不清楚。

方法

我们研究了负责 PINCH 蛋白介导的生物能量变化、线粒体亚细胞定位和暴露于生理水平 TNFα 或 HIV 蛋白 Tat 的神经元中生物能量缺陷的调节机制。评估了 PINCH-ILK-Parvin (PIP) 复合物与 cofilin 和 TESK1 的关联变化,以确定负责肌动蛋白解聚和线粒体定位错误的因素。进行慢病毒和药理学抑制实验以确认 PINCH 的特异性并重新建立适当的蛋白质-蛋白质复合物通讯。

结果

我们确定 MEF2A 是神经炎症中的 PINCH 转录因子,并确定了神经元中增加的 PINCH 的生物学后果。TNFα 通过增加细胞内钙介导的 MEF2A 激活诱导 PINCH,导致 PIP 三元复合物的破坏、TESK1 失活导致的 cofilin 激活以及肌动蛋白解聚。肌动蛋白的破坏通过破坏依赖于驱动蛋白的线粒体运输机制导致线粒体核周定位错误,从而导致神经元代谢受损。阻断 TNFα 诱导的 PINCH 表达可保留线粒体定位并维持代谢功能。

结论

本研究首次报道了 CNS 神经元中具有慢性神经炎症成分的疾病中 PINCH 表达的机制和生物学后果。我们的发现表明,维持 PINCH 处于正常生理水平可能是代谢受损的神经退行性疾病的一个潜在新治疗靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa01/7397656/a1eb59b43164/40035_2020_211_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验