College of Chemistry and Chemical Enginerring, Shanghai University of Engineering Science, Shanghai 201620, P. R. China.
J Mater Chem B. 2020 Sep 14;8(34):7801-7811. doi: 10.1039/d0tb01387k. Epub 2020 Aug 4.
MoS-based hybrids have aroused great interest for their outstanding performance in the application fields of biochemical sensing, catalysis and energy storage. Herein, we present a facile strategy to fabricate hierarchical microtubes by cultivating a MoS sheet-like nanostructure on polypyrrole microtubes (designated as PPy@MoS microtubes) using MoO@PPy micro-cables as self-sacrificial templates. Such a dissolution-regrowth mechanism is demonstrated for the formation of hierarchical PPy@MoS microtubes by studying the morphology of the intermediate products in the process of the sulfidation reaction. The PPy microtubes are able to effectively improve the electrical conductivity of the hybrid architecture and greatly alleviate the agglomeration of the MoS nanosheets. Notably, the sheet-like MoS nanostructure can load more noble metal nanoparticles (NPs) owing to MoS released photogenerated electrons irradiated by light. Then, metal (Ag, Au, and Pd) NPs are reduced and in situ decorated on PPy@MoS microtubes, thus forming ternary PPy@MoS@Ag, Au, and Pd nanohybrids, respectively. This decoration method also expands the wide range of application fields of PPy@MoS. As a proof of application, the ternary PPy@MoS@Au hybrids reveal excellent enzyme-like catalytic performance. Owing to the high coverage of Au NPs as well as one dimensional hierarchical MoS-based ternary unique structures, the resultant PPy@MoS@Au hybrid composites exhibited synergistically enhanced peroxidase-like catalytic activity relative to MoS, MoS@Au, and PPy@MoS alone, demonstrating the remarkable prospects of MoS-based hybrids in chemical/biological molecule sensing application.
基于 MoS 的杂化物因其在生化传感、催化和储能等应用领域的优异性能而引起了极大的兴趣。在此,我们提出了一种简便的策略,通过使用 MoO@PPy 微电缆作为自牺牲模板,在聚吡咯微管(标记为 PPy@MoS 微管)上培养 MoS 片状纳米结构来制备分级微管。通过研究硫化反应过程中中间产物的形态,证明了这种溶解-再生长机制是形成分级 PPy@MoS 微管的原因。PPy 微管能够有效地提高混合结构的电导率,并大大减轻 MoS 纳米片的团聚。值得注意的是,由于 MoS 释放的光生电子被光照射,片状 MoS 纳米结构可以负载更多的贵金属纳米颗粒(NPs)。然后,金属(Ag、Au 和 Pd)纳米颗粒被还原并原位装饰在 PPy@MoS 微管上,从而分别形成三元 PPy@MoS@Ag、Au 和 Pd 纳米杂化物。这种装饰方法还扩展了 PPy@MoS 的广泛应用领域。作为应用的证明,三元 PPy@MoS@Au 杂化物表现出优异的类酶催化性能。由于 Au NPs 的高覆盖率以及一维分级基于 MoS 的三元独特结构,所得的 PPy@MoS@Au 杂化物复合材料表现出相对于 MoS、MoS@Au 和 PPy@MoS 本身协同增强的过氧化物酶样催化活性,表明基于 MoS 的杂化物在化学/生物分子传感应用中具有显著的前景。