Suppr超能文献

一种基于信息论的人肾小球足细胞胰岛素传感方法。

An information theoretic approach to insulin sensing by human kidney podocytes.

机构信息

Bristol Renal, Bristol Medical School, University of Bristol, Bristol, BS13NY, UK.

College of Engineering, Mathematics and Physical Sciences, Living Systems Institute, University of Exeter, Exeter, EX44QF, UK.

出版信息

Mol Cell Endocrinol. 2020 Dec 1;518:110976. doi: 10.1016/j.mce.2020.110976. Epub 2020 Aug 1.

Abstract

Podocytes are key components of the glomerular filtration barrier (GFB). They are insulin-responsive but can become insulin-resistant, causing features of the leading global cause of kidney failure, diabetic nephropathy. Insulin acts via insulin receptors to control activities fundamental to GFB integrity, but the amount of information transferred is unknown. Here we measure this in human podocytes, using information theory-derived statistics that take into account cell-cell variability. High content imaging was used to measure insulin effects on Akt, FOXO and ERK. Mutual Information (MI) and Channel Capacity (CC) were calculated as measures of information transfer. We find that insulin acts via noisy communication channels with more information flow to Akt than to ERK. Information flow estimates were increased by consideration of joint sensing (ERK and Akt) and response trajectory (live cell imaging of FOXO1-clover translocation). Nevertheless, MI values were always <1Bit as most information was lost through signaling. Constitutive PI3K activity is a predominant feature of the system that restricts the proportion of CC engaged by insulin. Negative feedback from Akt supressed this activity and thereby improved insulin sensing, whereas sensing was robust to manipulation of feedforward signaling by inhibiting PI3K, PTEN or PTP1B. The decisions made by individual podocytes dictate GFB integrity, so we suggest that understanding the information on which the decisions are based will improve understanding of diabetic kidney disease and its treatment.

摘要

足细胞是肾小球滤过屏障 (GFB) 的关键组成部分。它们对胰岛素有反应,但也可能变得对胰岛素不敏感,导致全球主要的肾衰竭病因——糖尿病肾病的特征。胰岛素通过胰岛素受体发挥作用,控制对 GFB 完整性至关重要的活动,但传递的信息量未知。在这里,我们使用信息论衍生的统计数据来测量人类足细胞中的这一点,这些统计数据考虑了细胞间的变异性。高内涵成像用于测量胰岛素对 Akt、FOXO 和 ERK 的影响。互信息 (MI) 和信道容量 (CC) 被计算为信息传递的度量。我们发现,胰岛素通过噪声通信通道起作用,与 ERK 相比,胰岛素向 Akt 传递的信息量更多。通过考虑联合传感(ERK 和 Akt)和响应轨迹(FOXO1-四叶草易位的活细胞成像),信息流量估计值增加。然而,MI 值始终<1Bit,因为大多数信息在信号传递过程中丢失。PI3K 的组成性活性是系统的主要特征,它限制了由胰岛素参与的 CC 的比例。Akt 的负反馈抑制了这种活性,从而改善了胰岛素的感知能力,而通过抑制 PI3K、PTEN 或 PTP1B 来操纵前馈信号对感知能力的影响则很稳健。单个足细胞做出的决策决定了 GFB 的完整性,因此我们认为,了解决策所依据的信息将有助于提高对糖尿病肾病及其治疗的理解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验