Suppr超能文献

健康和患病肾小球对大量富含蛋白质膳食的功能反应。

Functional response of healthy and diseased glomeruli to a large, protein-rich meal.

作者信息

Chan A Y, Cheng M L, Keil L C, Myers B D

机构信息

Department of Medicine, Stanford University Medical Center, California 94305.

出版信息

J Clin Invest. 1988 Jan;81(1):245-54. doi: 10.1172/JCI113302.

Abstract

Differential solute clearances and hormone assays were used to characterize the effect of a large, protein-rich meal (1.5 g/kg) on glomerular function in 12 healthy volunteers (group I) and 12 patients with chronic glomerular disease (group II). Changes from baseline during 3 h after the meal included an elevation of plasma osmolality, progressive urinary concentration, and increasingly positive fluid balance. Plasma renin activity and arginine vasopressin levels (measured in group II only) increased significantly. Nevertheless, the rate of peak postmeal renal plasma flow became elevated by 13 and 33% in groups I and II, respectively. Corresponding peak increases in postmeal glomerular filtration rate exceeded baseline by 10 and 16%. In the proteinuric subjects of group II the fractional clearances of albumin, IgG and uncharged dextrans in the radius interval 36-54 A, declined significantly after the meal. A similar depression of the fractional dextran-clearance profile was observed also in group I. Applying the fractional clearances of relatively permeant dextrans (radii less than or equal to 44 A) to a model of hindered solute transport through an isoporous membrane, we estimate that transmembrane hydraulic pressure difference increased by 12% in group I and by between 0 to 12% in group II after protein ingestion. We conclude (i) that oral protein ingestion increases glomerular ultrafiltration pressure and rate in both normal and diseased glomeruli, (ii) that this hemodynamic response may be mediated in part by the glomerulopressor hormones angiotensin II and arginine vasopressin, and (iii) that the foregoing hemodynamic changes exert no acute adverse effect on glomerular barrier size-selectivity.

摘要

采用不同溶质清除率和激素测定方法,来表征一顿大量富含蛋白质的餐食(1.5 g/kg)对12名健康志愿者(I组)和12名慢性肾小球疾病患者(II组)肾小球功能的影响。餐后3小时内相对于基线的变化包括血浆渗透压升高、尿液逐渐浓缩以及液体平衡越来越呈正值。血浆肾素活性和精氨酸加压素水平(仅在II组测量)显著升高。然而,I组和II组餐后肾血浆流量峰值速率分别升高了13%和33%。餐后肾小球滤过率相应的峰值增加超过基线水平10%和16%。在II组的蛋白尿患者中,餐后白蛋白、IgG以及半径在36 - 54 Å区间的不带电荷右旋糖酐的分数清除率显著下降。在I组也观察到了类似的右旋糖酐分数清除率曲线下降情况。将相对通透的右旋糖酐(半径小于或等于44 Å)的分数清除率应用于溶质通过等孔膜的受阻传输模型,我们估计在摄入蛋白质后,I组跨膜液压差增加了12%,II组增加了0%至12%。我们得出结论:(i)口服蛋白质摄入会增加正常和患病肾小球的肾小球超滤压力和速率;(ii)这种血流动力学反应可能部分由肾小球加压激素血管紧张素II和精氨酸加压素介导;(iii)上述血流动力学变化对肾小球屏障大小选择性没有急性不良影响。

相似文献

1
Functional response of healthy and diseased glomeruli to a large, protein-rich meal.
J Clin Invest. 1988 Jan;81(1):245-54. doi: 10.1172/JCI113302.
3
Nature of the glomerular capillary injury in human membranous glomerulopathy.
J Clin Invest. 1986 Mar;77(3):868-77. doi: 10.1172/JCI112384.
4
Intravenously administered frusemide increases glomerular permeability.
Clin Sci (Lond). 1987 Oct;73(4):365-70. doi: 10.1042/cs0730365.
6
Functional nature of glomerular injury in progressive diabetic glomerulopathy.
Diabetes. 1987 May;36(5):556-65. doi: 10.2337/diab.36.5.556.
7
Glomerular capillary wall function in human lupus nephritis.
Am J Physiol. 1984 May;246(5 Pt 2):F580-91. doi: 10.1152/ajprenal.1984.246.5.F580.
8
Effects of converting-enzyme inhibition on barrier function in diabetic glomerulopathy.
Diabetes. 1990 Jan;39(1):76-82. doi: 10.2337/diacare.39.1.76.
9
Glomerular and hormonal responses to dietary protein intake in human renal disease.
Am J Physiol. 1987 Dec;253(6 Pt 2):F1083-90. doi: 10.1152/ajprenal.1987.253.6.F1083.

引用本文的文献

1
The effects of soy protein and soy isoflavones intake on chronic kidney disease: a systematic review and meta-analysis.
Int Urol Nephrol. 2025 May;57(5):1533-1553. doi: 10.1007/s11255-024-04301-4. Epub 2024 Nov 29.
2
Impact of dietary habits on renal function in Saku, a rural Japanese town: a cohort study.
Clin Exp Nephrol. 2024 Aug;28(8):751-763. doi: 10.1007/s10157-024-02479-6. Epub 2024 Mar 12.
4
A Survey Study on Soy Food Consumption in Patients with Chronic Kidney Diseases.
Inquiry. 2022 Jan-Dec;59:469580221093450. doi: 10.1177/00469580221093450.
5
Kidney disease risk factors do not explain impacts of low dietary protein on kidney function and structure.
iScience. 2021 Oct 16;24(11):103308. doi: 10.1016/j.isci.2021.103308. eCollection 2021 Nov 19.
7
Renal response to an oral protein load in patients with central diabetes insipidus before and after treatment with vasopressin.
J Nephrol. 2019 Jun;32(3):411-415. doi: 10.1007/s40620-018-00575-x. Epub 2019 Feb 19.

本文引用的文献

2
Renal function in renal diseases.
Am J Med. 1950 Dec;9(6):766-98. doi: 10.1016/0002-9343(50)90292-0.
3
RENAL EXTRACTION OF PAH IN RENAL DISEASE.
Scand J Clin Lab Invest. 1964;16:12-20. doi: 10.3109/00365516409060477.
4
The renal extraction of para-aminohippurate in normal persons and in patients with diseased kidneys.
Scand J Clin Lab Invest. 1959;11:361-75. doi: 10.3109/00365515909060466.
8
Renal functional reserve in humans. Effect of protein intake on glomerular filtration rate.
Am J Med. 1983 Dec;75(6):943-50. doi: 10.1016/0002-9343(83)90873-2.
9
Short-term protein loading in assessment of patients with renal disease.
Am J Med. 1984 Nov;77(5):873-9. doi: 10.1016/0002-9343(84)90529-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验