Suppr超能文献

慕尼黑紧凑型光源体内X射线微束辐照的技术与剂量学实现

Technical and dosimetric realization of in vivo x-ray microbeam irradiations at the Munich Compact Light Source.

作者信息

Burger Karin, Urban Theresa, Dombrowsky Annique C, Dierolf Martin, Günther Benedikt, Bartzsch Stefan, Achterhold Klaus, Combs Stephanie E, Schmid Thomas E, Wilkens Jan J, Pfeiffer Franz

机构信息

Department of Radiation Oncology, School of Medicine & Klinikum rechts der Isar, Technical University of Munich, Munich, 81675, Germany.

Chair of Biomedical Physics, Department of Physics and Munich School of BioEngineering, Technical University of Munich, Garching, 85748, Germany.

出版信息

Med Phys. 2020 Oct;47(10):5183-5193. doi: 10.1002/mp.14433. Epub 2020 Aug 27.

Abstract

PURPOSE

X-ray microbeam radiation therapy is a preclinical concept for tumor treatment promising tissue sparing and enhanced tumor control. With its spatially separated, periodic micrometer-sized pattern, this method requires a high dose rate and a collimated beam typically available at large synchrotron radiation facilities. To treat small animals with microbeams in a laboratory-sized environment, we developed a dedicated irradiation system at the Munich Compact Light Source (MuCLS).

METHODS

A specially made beam collimation optic allows to increase x-ray fluence rate at the position of the target. Monte Carlo simulations and measurements were conducted for accurate microbeam dosimetry. The dose during irradiation is determined by a calibrated flux monitoring system. Moreover, a positioning system including mouse monitoring was built.

RESULTS

We successfully commissioned the in vivo microbeam irradiation system for an exemplary xenograft tumor model in the mouse ear. By beam collimation, a dose rate of up to 5.3 Gy/min at 25 keV was achieved. Microbeam irradiations using a tungsten collimator with 50 μm slit size and 350 μm center-to-center spacing were performed at a mean dose rate of 0.6 Gy/min showing a high peak-to-valley dose ratio of about 200 in the mouse ear. The maximum circular field size of 3.5 mm in diameter can be enlarged using field patching.

CONCLUSIONS

This study shows that we can perform in vivo microbeam experiments at the MuCLS with a dedicated dosimetry and positioning system to advance this promising radiation therapy method at commercially available compact microbeam sources. Peak doses of up to 100 Gy per treatment seem feasible considering a recent upgrade for higher photon flux. The system can be adapted for tumor treatment in different animal models, for example, in the hind leg.

摘要

目的

X射线微束放射治疗是一种用于肿瘤治疗的临床前概念,有望实现组织保护并增强肿瘤控制。由于其具有空间分离的周期性微米级图案,该方法需要高剂量率和通常在大型同步辐射设施中才可获得的准直光束。为了在实验室规模的环境中用微束治疗小动物,我们在慕尼黑紧凑型光源(MuCLS)上开发了一种专用的辐照系统。

方法

特制的光束准直光学器件可提高靶位置处的X射线注量率。进行了蒙特卡罗模拟和测量以实现精确的微束剂量测定。辐照期间的剂量由校准的通量监测系统确定。此外,构建了一个包括小鼠监测的定位系统。

结果

我们成功调试了用于小鼠耳部示例性异种移植肿瘤模型的体内微束辐照系统。通过光束准直,在25keV时实现了高达5.3Gy/min的剂量率。使用狭缝尺寸为50μm且中心距为350μm的钨准直器进行微束辐照,平均剂量率为0.6Gy/min,在小鼠耳部显示出约200的高峰谷剂量比。通过野拼接可将最大直径为3.5mm的圆形野尺寸扩大。

结论

本研究表明,我们可以在MuCLS上使用专用的剂量测定和定位系统进行体内微束实验,以在市售紧凑型微束源上推进这种有前景的放射治疗方法。考虑到最近对更高光子通量的升级,每次治疗高达100Gy的峰值剂量似乎是可行的。该系统可适用于不同动物模型的肿瘤治疗,例如在后腿。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验