Suppr超能文献

神经网络技术在龋齿预测中的应用。

Application of neural network technologies in the dental caries forecast.

作者信息

Udod Oleksandr A, Voronina Hanna S, Ivchenkova Olena Yu

机构信息

Donetsk National Medical University, Lyman, Ukraine.

Donbass State Engineering Academy, Kramatorsk, Ukraine.

出版信息

Wiad Lek. 2020;73(7):1499-1504.

Abstract

OBJECTIVE

The aim: of the work was to develop and apply in the clinical trial a software product for the dental caries prediction based on neural network programming.

PATIENTS AND METHODS

Materials and methods: Dental examination of 73 persons aged 6-7, 12-15 and 35-44 years was carried out. The data obtained during the survey were used as input for the construction and training of the neural network. The output index was determined by the increase in the intensity of caries, taking into account the number of cavities. To build a neural network, a high-level Python programming language with the NumPay extension was used.

RESULTS

Results: The intensity of carious dental lesions was the highest in 35-44 years old patients - 6.69 ± 0.38, in 6-7 years old children and 12-15 years old children it was 3.85 ± 0.27 and 2.15 ± 0.24, respectively (p <0.05). After constructing and training the neural network, 61 true and 12 false predictions were obtained based on these indices, the accuracy of predicting the occurrence of caries was 83.56%. Based on these results, a graphical user interface for the "CariesPro" software application was created.

CONCLUSION

Conclusions: The resulting neural network and the software product based on it permit to predict the development of dental caries in persons of all ages with a probability of 83.56%.

摘要

目的

本研究旨在开发一款基于神经网络编程的龋齿预测软件产品,并将其应用于临床试验。

患者与方法

对73名年龄在6 - 7岁、12 - 15岁和35 - 44岁的人员进行了口腔检查。调查期间获得的数据被用作神经网络构建和训练的输入。输出指标通过考虑龋洞数量的龋齿强度增加来确定。为构建神经网络,使用了带有NumPay扩展的高级Python编程语言。

结果

结果显示,35 - 44岁患者的龋齿病变强度最高,为6.69±0.38;6 - 7岁儿童和12 - 15岁儿童的龋齿病变强度分别为3.85±0.27和2.15±0.24(p<0.05)。基于这些指标构建并训练神经网络后,得到了61个正确预测和12个错误预测,龋齿发生预测的准确率为83.56%。基于这些结果,创建了“CariesPro”软件应用程序的图形用户界面。

结论

所得的神经网络及其基于此的软件产品能够以83.56%的概率预测各年龄段人群龋齿的发展情况。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验