Martinez Paloma, Papagiannouli Irene, Descamps Dominique, Petit Stéphane, Marthelot Joël, Lévy Anna, Fabre Baptiste, Dory Jean-Baptiste, Bernier Nicolas, Raty Jean-Yves, Noé Pierre, Gaudin Jérôme
CELIA, Université Bordeaux, CEA, CNRS, UMR 5107, 351 Cours de la Libération, Talence, F-33405, France.
Aix-Marseille Université, CNRS, IUSTI, Marseille, F-13013, France.
Adv Mater. 2020 Sep;32(38):e2003032. doi: 10.1002/adma.202003032. Epub 2020 Aug 6.
Laser interaction with solids is routinely used for functionalizing materials' surfaces. In most cases, the generation of patterns/structures is the key feature to endow materials with specific properties like hardening, superhydrophobicity, plasmonic color-enhancement, or dedicated functions like anti-counterfeiting tags. A way to generate random patterns, by means of generation of wrinkles on surfaces resulting from laser melting of amorphous Ge-based chalcogenide thin films, is presented. These patterns, similar to fingerprints, are modulations of the surface height by a few tens of nanometers with a sub-micrometer periodicity. It is shown that the patterns' spatial frequency depends on the melted layer thickness, which can be tuned by varying the impinging laser fluence. The randomness of these patterns makes them an excellent candidate for the generation of physical unclonable function tags (PUF-tags) for anti-counterfeiting applications. Two specific ways are tested to identify the obtained PUF-tag: cross-correlation procedure or using a neural network. In both cases, it is demonstrated that the PUF-tag can be compared to a reference image (PUF-key) and identified with a high recognition ratio on most real application conditions. This paves the way to straightforward non-deterministic PUF-tag generation dedicated to small sensitive parts such as, for example, electronic devices/components, jewelry, or watchmak.
激光与固体的相互作用通常用于材料表面功能化。在大多数情况下,图案/结构的生成是赋予材料特定性能(如硬化、超疏水性、等离子体颜色增强)或特定功能(如防伪标签)的关键特征。本文提出了一种通过激光熔化非晶态锗基硫属化物薄膜在表面产生皱纹来生成随机图案的方法。这些图案类似于指纹,是表面高度的调制,幅度为几十纳米,周期为亚微米级。结果表明,图案的空间频率取决于熔化层厚度,而熔化层厚度可通过改变入射激光能量密度进行调节。这些图案的随机性使其成为用于防伪应用的物理不可克隆功能标签(PUF标签)生成的理想候选者。测试了两种识别所获得的PUF标签的具体方法:互相关程序或使用神经网络。在这两种情况下,都证明了PUF标签可以与参考图像(PUF密钥)进行比较,并在大多数实际应用条件下以高识别率进行识别。这为直接生成专用于小型敏感部件(如电子设备/组件、珠宝或手表)的非确定性PUF标签铺平了道路。