Suppr超能文献

用于评估减重术后轮廓畸形的PRS彩虹分类法。

The PRS Rainbow Classification for Assessing Postbariatric Contour Deformities.

作者信息

de Vries Claire E E, van den Berg Lisa, Monpellier Valerie M, Hoogbergen Maarten M, Mink van der Molen Aebele B, de Castro Steve M M, van der Lei Berend

机构信息

Department of Surgery, OLVG, Amsterdam, The Netherlands.

Department of Plastic and Reconstructive Surgery, Catharina Hospital, Eindhoven, The Netherlands.

出版信息

Plast Reconstr Surg Glob Open. 2020 Jun 24;8(6):e2874. doi: 10.1097/GOX.0000000000002874. eCollection 2020 Jun.

Abstract

BACKGROUND

There is a need for a reliable classification system to grade contour deformities and to inform reimbursement of body contouring surgery after massive weight loss. We developed the PRS Rainbow Classification, which uses select photographs to provide standardized references for evaluating patient photographs, to classify contour deformities in postbariatric patients. To assess the reliability of the PRS Rainbow Classification to classify contour deformities in massive weight loss patients.

METHODS

Ten independent experienced plastic surgeons, 7 experienced medical advisors of the healthcare insurance company, and 10 laypersons evaluated 50 photographs per anatomical region (arms, breast, abdomen, and medial thighs). Each participant rated the patient photographs on a scale of 1-3 in an online survey. The inter-observer and the intra-observer reliabilities were determined using intra-class correlation coefficients (ICCs). The ICC analyses were performed for each anatomical region.

RESULTS

Inter-observer reliability was moderate to good in the body regions "arms," "abdomen," "medial thighs," with mean ICC values of 0.678 [95% confidence interval (CI), 0.591-0.768], 0.685 (95% CI, 0.599-0.773), and 0.658 (95% CI, 0.569-0.751), respectively. Inter-observer reliability was comparable within the 3 different professional groups. Intra-observer reliability (test-retest reliability) was moderate to good, with a mean overall ICC value of 0.723 (95% CI, 0.572-0.874) for all groups and all 4 body regions.

CONCLUSIONS

The moderate to good reliability found in this study validates the use of the PRS Rainbow Classification as a reproducible and reliable classification system to assess contour deformities after massive weight loss. It holds promise as a key part of instruments to classify body contour deformities and to assess reimbursement of body contouring surgery.

摘要

背景

需要一种可靠的分类系统来对轮廓畸形进行分级,并为大幅减重后的身体塑形手术报销提供依据。我们开发了PRS彩虹分类法,该方法使用选定的照片为评估患者照片提供标准化参考,以对减肥后患者的轮廓畸形进行分类。目的是评估PRS彩虹分类法对大幅减重患者轮廓畸形进行分类的可靠性。

方法

10名独立的经验丰富的整形外科医生、7名医疗保险机构经验丰富的医学顾问和10名非专业人员对每个解剖区域(手臂、乳房、腹部和大腿内侧)的50张照片进行评估。每位参与者在在线调查中按照1-3的等级对患者照片进行评分。使用组内相关系数(ICC)确定观察者间和观察者内的可靠性。对每个解剖区域进行ICC分析。

结果

在“手臂”“腹部”“大腿内侧”这些身体区域,观察者间可靠性为中等至良好,平均ICC值分别为0.678[95%置信区间(CI),0.591-0.768]、0.685(95%CI,0.599-0.773)和0.658(95%CI,0.569-0.751)。在3个不同专业组中,观察者间可靠性相当。观察者内可靠性(重测可靠性)为中等至良好,所有组和所有4个身体区域的平均总体ICC值为0.723(95%CI,0.572-0.874)。

结论

本研究发现的中等至良好的可靠性验证了PRS彩虹分类法作为一种可重复且可靠的分类系统用于评估大幅减重后轮廓畸形的用途。它有望成为对身体轮廓畸形进行分类和评估身体塑形手术报销的工具的关键组成部分。

相似文献

1
The PRS Rainbow Classification for Assessing Postbariatric Contour Deformities.用于评估减重术后轮廓畸形的PRS彩虹分类法。
Plast Reconstr Surg Glob Open. 2020 Jun 24;8(6):e2874. doi: 10.1097/GOX.0000000000002874. eCollection 2020 Jun.
3
A classification of contour deformities after bariatric weight loss: the Pittsburgh Rating Scale.减肥手术后轮廓畸形的分类:匹兹堡评分量表
Plast Reconstr Surg. 2005 Oct;116(5):1535-44; discussion 1545-6. doi: 10.1097/01.prs.0000182606.92069.13.

本文引用的文献

1
The BAPRAS screening tool for reimbursement in a postbariatric population.BAPRAS 筛查工具在减重后人群中的报销应用。
J Plast Reconstr Aesthet Surg. 2020 Jun;73(6):1159-1165. doi: 10.1016/j.bjps.2020.02.002. Epub 2020 Feb 13.
2
A Review of National Insurance Coverage of Post-bariatric Upper Body Lift.《减重后上半身提升术的国家保险覆盖范围综述》
Aesthetic Plast Surg. 2019 Oct;43(5):1250-1256. doi: 10.1007/s00266-019-01420-7. Epub 2019 Jun 25.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验