Coastal and Marine Sciences Institute, University of California, Davis, California, 95616, USA.
California Department of Fish and Wildlife, Marine Region, Eureka, California, 95501, USA.
Ecol Appl. 2021 Jan;31(1):e2215. doi: 10.1002/eap.2215. Epub 2020 Oct 12.
Marine Protected Areas (MPAs) are increasingly established globally as a spatial management tool to aid in conservation and fisheries management objectives. Assessing whether MPAs are having the desired effects on populations requires effective monitoring programs. A cornerstone of an effective monitoring program is an assessment of the statistical power of sampling designs to detect changes when they occur. We present a novel approach to power assessment that combines spatial point process models, integral projection models (IPMs) and sampling simulations to assess the power of different sample designs across a network of MPAs. We focus on the use of remotely operated vehicle (ROV) video cameras as the sampling method, though the results could be extended to other sampling methods. We use empirical data from baseline surveys of an example indicator fish species across three MPAs in California, USA as a case study. Spatial models simulated time series of spatial distributions across sites that accounted for the effects of environmental covariates, while IPMs simulated expected trends over time in abundances and sizes of fish. We tested the power of different levels of sampling effort (i.e., the number of 500-m ROV transects) and temporal replication (every 1-3 yr) to detect expected post-MPA changes in fish abundance and biomass. We found that changes in biomass are detectable earlier than changes in abundance. We also found that detectability of MPA effects was higher in sites with higher initial densities. Increasing the sampling effort had a greater effect than increasing sampling frequency on the time taken to achieve high power. High power was best achieved by combining data from multiple sites. Our approach provides a powerful tool to explore the interaction between sampling effort, spatial distributions, population dynamics, and metrics for detecting change in previously fished populations.
海洋保护区 (MPAs) 作为一种空间管理工具,在全球范围内得到了越来越多的建立,以辅助保护和渔业管理目标。评估 MPA 是否对种群产生了预期的影响,需要有效的监测计划。一个有效的监测计划的基石是评估抽样设计在发生变化时检测变化的统计能力。我们提出了一种新的方法来评估能力,该方法结合了空间点过程模型、积分投影模型 (IPMs) 和抽样模拟,以评估网络中不同样本设计在 MPA 中的能力。我们专注于使用遥控潜水器 (ROV) 摄像机作为采样方法,尽管结果可以扩展到其他采样方法。我们使用来自美国加利福尼亚州三个 MPA 中一个指示鱼种的基线调查的经验数据作为案例研究。空间模型模拟了跨站点的空间分布时间序列,这些模型考虑了环境协变量的影响,而 IPMs 则模拟了鱼类丰度和大小随时间的预期趋势。我们测试了不同水平的采样工作量(即,500 米 ROV 横截线上的样本数量)和时间复制(每 1-3 年)的能力,以检测鱼类丰度和生物量在 MPA 后的预期变化。我们发现,生物量的变化比丰度的变化更早被检测到。我们还发现,在初始密度较高的地点,MPA 效应的可检测性更高。增加采样工作量比增加采样频率对达到高能力的时间影响更大。通过结合多个地点的数据,可以最好地实现高能力。我们的方法提供了一个强大的工具,可以探索采样工作量、空间分布、种群动态以及在以前捕捞过的种群中检测变化的指标之间的相互作用。