School of Chemistry and Physics and QUT Centre for Materials Science, Queensland University of Technology (QUT), Brisbane QLD 4000, Australia.
School of Chemical and Biomolecular Engineering, The University of Sydney, NSW 2006, Australia.
Bioresour Technol. 2020 Dec;318:123917. doi: 10.1016/j.biortech.2020.123917. Epub 2020 Jul 29.
Lignin valorisation into renewable fuels and platform chemicals is desirable but still encounters major challenges due to lignin's recalcitrant structure, and the lack of cost-, energy-, and material efficient conversion processes. Herein, we report a low-temperature plasma-based route to lignin depolymerisation at mild conditions. The discharge over ethanol surface locally creating a high-energy and reactive environment rich in free electrons, energetic H radicals, and other reactive species, is well suited for lignin depolymerisation. Furthermore, assisted with a Fenton reaction (by adding FeO and HO) to sustain a more oxidative environment, the lignin conversion yield increases from 42.6% to 66.0%. Thus-obtained renewable chemicals are rich in aromatics and dicarboxylic acid derivatives. The proposed strategy on intensifying reactive chemistry by high-power plasmas enables an effective power-to-chemicals conversion of lignin and may provide useful guidelines for modern biorefineries.
木质素的增值转化为可再生燃料和平台化学品是可取的,但由于木质素的顽固结构,以及缺乏成本效益高、能源和材料效率高的转化工艺,仍然面临重大挑战。在此,我们报告了一种在低温等离子体条件下在温和条件下进行木质素解聚的方法。在乙醇表面放电会局部产生高能和高反应性环境,其中富含自由电子、高能 H 自由基和其他活性物质,非常适合木质素解聚。此外,通过添加 FeO 和 HO 来辅助进行芬顿反应,以维持更氧化的环境,可以将木质素的转化率从 42.6%提高到 66.0%。由此得到的可再生化学品富含芳烃和二羧酸衍生物。通过高功率等离子体强化反应化学的策略可以有效地将木质素转化为化学物质,为现代生物精炼厂提供了有用的指导。