LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France; Centre de Biochimie Structurale. INSERM, CNRS, Université de Montpellier, France.
LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France.
J Mol Biol. 2020 Sep 4;432(19):5447-5459. doi: 10.1016/j.jmb.2020.07.026. Epub 2020 Aug 6.
Intrinsically disordered proteins (IDPs) play key functional roles facilitated by their inherent plasticity. In most of the cases, IDPs recognize their partners through partially structured elements inserted in fully disordered chains. The identification and characterization of these elements is fundamental to understand the functional mechanisms of IDPs. Although several computational methods have been developed to identify order within disordered chains, most of the current secondary structure predictors are focused on globular proteins and are not necessarily appropriate for IDPs. Here, we present a comprehensible method, called Local Structural Propensity Predictor (LS2P), to predict secondary structure elements from IDP sequences. LS2P performs statistical analyses from a database of three-residue fragments extracted from coil regions of high-resolution protein structures. In addition to identifying scarcely populated helical and extended regions, the method pinpoints short stretches triggering β-turn formation or promoting α-helices. The simplicity of the method enables a direct connection between experimental observations and structural features encoded in IDP sequences.
无规卷曲蛋白质(IDPs)通过其固有的可塑性发挥关键的功能作用。在大多数情况下,IDPs 通过插入完全无序链中的部分结构元件来识别其伴侣。这些元件的鉴定和特征描述对于理解 IDPs 的功能机制至关重要。尽管已经开发了几种计算方法来识别无序链中的有序结构,但大多数当前的二级结构预测器都集中在球状蛋白质上,不一定适用于 IDPs。在这里,我们提出了一种易于理解的方法,称为局部结构倾向性预测器(LS2P),用于从 IDP 序列中预测二级结构元件。LS2P 从高分辨率蛋白质结构的卷曲区域中提取的三残基片段数据库中进行统计分析。除了识别稀有存在的螺旋和延伸区域外,该方法还可以确定引发β-转角形成或促进α-螺旋的短片段。该方法的简单性使得可以在实验观察结果和 IDP 序列中编码的结构特征之间建立直接联系。