Structural Biology and Bio-computing Lab, Department of Bioinformatics, Alagappa University, Karaikudi - 630 004, Tamil Nadu, India.
School of Medicine, Medical Sciences and Nutrition, 0:025 Polwarth building, Foresterhill, Aberdeen AB25 2ZD, UK.
J Med Microbiol. 2020 Aug;69(8):1062-1078. doi: 10.1099/jmm.0.001233. Epub 2020 Aug 10.
is a critical priority pathogen listed by the World Health Organization due to increasing levels of resistance to carbapenem classes of antibiotics. It causes wound and other nosocomial infections, which can be life-threatening. Hence, there is an urgent need for the development of new classes of antibiotics. To study the interaction of carabapenems with class D beta-lactamases (oxacillinases) and analyse drug resistance by studying enzyme-substrate complexes using modelling approaches as a means of establishing correlations with the phenotypic data. The three-dimensional structures of carbapenems (doripenem, ertapenem, imipenem and meropenem) were obtained from DrugBank and screened against class D beta-lactamases. Further, the study was extended with their variants. The variants' structure was homology-modelled using the Schrödinger Prime module (Schrödinger LLC, NY, USA). The first discovered intrinsic beta-lactamase of , OXA-51, had a binding energy value of -40.984 kcal mol, whereas other OXA-51 variants, such as OXA-64, OXA-110 and OXA-111, have values of -60.638, -66.756 and -67.751 kcal mol, respectively. The free energy values of OXA-51 variants produced better results than those of other groups. Imipenem and meropenem showed MIC values of 2 and 8 µg ml, respectively against OXA-51 in earlier studies, indicating that these are the most effective drugs for treatment of infection. According to our results, OXA-51 is an active enzyme that shows better interactions and is capable of hydrolyzing carbapenems. When correlating the hydrogen-bonding interaction with MIC values, the predicted results are in good agreement and might provide initial insights into performing similar studies related to OXA variants or other antibiotic-enzyme-based studies.
鲍曼不动杆菌是世界卫生组织列为危急优先病原体,由于其对碳青霉烯类抗生素的耐药水平不断上升。它会导致伤口和其他医院获得性感染,这些感染可能危及生命。因此,迫切需要开发新的抗生素类别。本研究通过使用建模方法研究碳青霉烯类药物与 D 类β-内酰胺酶(氧头孢烷酶)的相互作用,并分析酶-底物复合物,以建立与表型数据的相关性,从而研究碳青霉烯类药物的相互作用。从 DrugBank 获得碳青霉烯类(多利培南、厄他培南、亚胺培南和美罗培南)的三维结构,并对其进行 D 类β-内酰胺酶筛选。此外,还对其变体进行了进一步研究。使用 Schrödinger Prime 模块(Schrödinger LLC,纽约,美国)对变体结构进行同源建模。第一个发现的 固有β-内酰胺酶,OXA-51,其结合能值为-40.984 kcal mol,而其他 OXA-51 变体,如 OXA-64、OXA-110 和 OXA-111,其值分别为-60.638、-66.756 和-67.751 kcal mol。OXA-51 变体的自由能值产生了比其他组更好的结果。在早期的研究中,亚胺培南和美罗培南对 OXA-51 的 MIC 值分别为 2 和 8 μg/ml,表明这两种药物是治疗 感染最有效的药物。根据我们的结果,OXA-51 是一种活性酶,具有更好的相互作用,能够水解碳青霉烯类药物。当将氢键相互作用与 MIC 值相关联时,预测结果非常吻合,这可能为进行类似的 OXA 变体或其他基于抗生素-酶的研究提供初步见解。