Department of Hematology, The Affiliated People's Hospital of Ningbo University, No. 251, East Baizhang Road, Ningbo, 315000, Zhejiang, China.
Clin Transl Oncol. 2021 Mar;23(3):648-656. doi: 10.1007/s12094-020-02460-1. Epub 2020 Aug 10.
Acute myeloid leukemia (AML) is the most common type of acute leukemia and biologically heterogeneous diseases with poor prognosis. Thus, we aimed to identify prognostic markers to effectively predict the prognosis of AML patients and eventually guide treatment.
Prognosis-associated genes were determined by Kaplan-Meier and multivariate analyses using the expression and clinical data of 173 AML patients from The Cancer Genome Atlas database and validated in an independent Oregon Health and Science University dataset. A prognostic risk score was computed based on a linear combination of 5-gene expression levels using the regression coefficients derived from the multivariate logistic regression model. The classification of AML was established by unsupervised hierarchical clustering of CALCRL, DOCK1, PLA2G4A, FCHO2 and LRCH4 expression levels.
High FCHO2 and LRCH4 expression was related to decreased mortality. While high CALCRL, DOCK1, PLA2G4A expression was associated with increased mortality. The risk score was predictive of increased mortality rate in AML patients. Hierarchical clustering analysis of the five genes discovered three clusters of AML patients. The cluster1 AML patients were associated with lower cytogenetics risk than cluster2 or 3 patients, and better prognosis than cluster3 patients (P values < 0.05 for all cases, fisher exact test or log-rank test).
The gene panel comprising CALCRL, DOCK1, PLA2G4A, FCHO2 and LRCH4 as well as the risk score may offer novel prognostic biomarkers and classification of AML patients to significantly improve outcome prediction.
急性髓系白血病(AML)是最常见的急性白血病类型,具有生物学异质性和预后不良的特点。因此,我们旨在确定预后标志物,以有效地预测 AML 患者的预后,并最终指导治疗。
通过 Kaplan-Meier 分析和多变量分析,利用癌症基因组图谱数据库中 173 名 AML 患者的表达和临床数据,以及俄勒冈健康与科学大学独立数据集进行验证。根据多元逻辑回归模型的回归系数,基于 5 个基因表达水平的线性组合计算预后风险评分。通过 CALCRL、DOCK1、PLA2G4A、FCHO2 和 LRCH4 表达水平的无监督层次聚类建立 AML 的分类。
FCHO2 和 LRCH4 的高表达与死亡率降低有关,而 CALCRL、DOCK1、PLA2G4A 的高表达与死亡率升高有关。风险评分可预测 AML 患者死亡率的升高。对这 5 个基因的层次聚类分析发现了 3 组 AML 患者。与 cluster2 或 3 患者相比,cluster1 AML 患者的细胞遗传学风险较低,预后较好,与 cluster3 患者相比(所有病例的 P 值均<0.05,Fisher 确切检验或对数秩检验)。
包含 CALCRL、DOCK1、PLA2G4A、FCHO2 和 LRCH4 的基因面板以及风险评分可能为 AML 患者提供新的预后生物标志物和分类,从而显著改善预后预测。