Suppr超能文献

理解用于锂离子和钠离子电池的由还原氧化石墨烯包裹的CoC₂O₄·2H₂O微棒的高性能阳极材料。

Understanding the High-Performance Anode Material of CoC O ⋅2 H O Microrods Wrapped by Reduced Graphene Oxide for Lithium-Ion and Sodium-Ion Batteries.

作者信息

Zhang Yingying, Wang Canpei, Dong Yutao, Wei Ruipeng, Zhang Jianmin

机构信息

College of Chemistry, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, 450001, China.

College of Science, Henan Agricultural University, No. 63 Agricultural Road, Zhengzhou, 450002, China.

出版信息

Chemistry. 2021 Jan 13;27(3):993-1001. doi: 10.1002/chem.202003309. Epub 2020 Dec 3.

Abstract

Metal oxalate has become a most promising candidate as an anode material for lithium-ion and sodium-ion batteries. However, capacity decrease owing to the volume expansion of the active material during cycling is a problem. Herein, a rod-like CoC O ⋅2 H O/rGO hybrid is fabricated through a novel multistep solvo/hydrothermal strategy. The structural characteristics of the CoC O ⋅2 H O microrod wrapped using rGO sheets not only inhibit the volume variation of the hybrid electrode during cycling, but also accelerate the transfer of electrons and ions in the 3 D graphene network, thereby improving the electrochemical properties of CoC O ⋅2 H O. The CoC O ⋅2 H O/rGO electrode delivers a specific capacity of 1011.5 mA h g at 0.2 A g after 200 cycles for lithium storage, and a high capacity of 221.1 mA h g at 0.2 A g after 100 cycles for sodium storage. Moreover, the full cell CoC O ⋅2 H O/rGO//LiCoO consisting of the CoC O ⋅2 H O/rGO anode and LiCoO cathode maintains 138.1 mA h g after 200 cycles at 0.2 A g and has superior long-cycle stability. In addition, in situ Raman spectroscopy and in situ and ex situ X-ray diffraction techniques provide a unique opportunity to understand fully the reaction mechanism of CoC O ⋅2 H O/rGO. This work also gives a new perspective and solid research basis for the application of metal oxalate materials in high-performance lithium-ion and sodium-ion batteries.

摘要

金属草酸盐已成为锂离子和钠离子电池阳极材料中最具潜力的候选者。然而,在循环过程中由于活性材料的体积膨胀导致容量下降是一个问题。在此,通过一种新颖的多步溶剂/水热策略制备了棒状CoC₂O₄·2H₂O/rGO复合材料。用rGO片包裹的CoC₂O₄·2H₂O微棒的结构特性不仅抑制了复合电极在循环过程中的体积变化,还加速了三维石墨烯网络中电子和离子的传输,从而改善了CoC₂O₄·2H₂O的电化学性能。CoC₂O₄·2H₂O/rGO电极在0.2 A g的电流下进行200次锂存储循环后,比容量为1011.5 mA h g,在0.2 A g的电流下进行100次钠存储循环后,比容量为221.1 mA h g。此外,由CoC₂O₄·2H₂O/rGO阳极和LiCoO₂阴极组成的全电池CoC₂O₄·2H₂O/rGO//LiCoO₂在0.2 A g的电流下进行200次循环后,比容量保持在138.1 mA h g,具有优异的长循环稳定性。此外,原位拉曼光谱以及原位和非原位X射线衍射技术为全面了解CoC₂O₄·2H₂O/rGO的反应机理提供了独特的机会。这项工作也为金属草酸盐材料在高性能锂离子和钠离子电池中的应用提供了新的视角和坚实的研究基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验