Department of Pharmaceutical Sciences and, Center for Biomolecular Sciences, University of Illinois, Chicago, IL 60607, USA.
Department of Microbiology and Cell Science and, Genetics Institute, University of Florida, Gainesville, FL 32611, USA.
Chembiochem. 2020 Dec 11;21(24):3495-3499. doi: 10.1002/cbic.202000349. Epub 2020 Sep 16.
Homochirality is a signature of biological systems. The essential and ubiquitous cofactor S-adenosyl-l-methionine (SAM) is synthesized in cells from adenosine triphosphate and l-methionine to yield exclusively the (S,S)-SAM diastereomer. (S,S)-SAM plays a crucial role as the primary methyl donor in transmethylation reactions important to the development and homeostasis of all organisms from bacteria to humans. However, (S,S)-SAM slowly racemizes at the sulfonium center to yield the inactive (R,S)-SAM, which can inhibit methyltransferases. Control of SAM homochirality has been shown to involve homocysteine S-methyltransferases in plants, insects, worms, yeast, and in ∼18 % of bacteria. Herein, we show that a recombinant protein containing a domain of unknown function (DUF62) from the actinomycete bacterium Salinispora tropica functions as a stereoselective (R,S)-SAM hydrolase (adenosine-forming). DUF62 proteins are encoded in the genomes of 21 % of bacteria and 42 % of archaea and potentially represent a novel mechanism to remediate SAM damage.
手性是生物系统的特征之一。作为细胞内必需且普遍存在的辅酶,S-腺苷甲硫氨酸(SAM)由三磷酸腺苷和 L-蛋氨酸合成,仅生成(S,S)-SAM 对映异构体。(S,S)-SAM 作为主要的甲基供体,在转甲基反应中发挥关键作用,对从细菌到人类等所有生物体的发育和内稳态都至关重要。然而,(S,S)-SAM 会在亚砜中心缓慢外消旋化,生成无活性的(R,S)-SAM,从而抑制甲基转移酶。已经证明,SAM 手性的控制涉及植物、昆虫、蠕虫、酵母以及约 18%的细菌中的同型半胱氨酸 S-甲基转移酶。在此,我们展示了来自海洋放线菌 Salinispora tropica 的含有一个未知功能结构域(DUF62)的重组蛋白作为立体选择性(R,S)-SAM 水解酶(腺苷形成)发挥作用。DUF62 蛋白编码在 21%的细菌和 42%的古菌的基因组中,可能代表了一种修复 SAM 损伤的新机制。