Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Walloon Excellence in Life sciences and BIOtechnology (WELBIO), UCLouvain, Université catholique de Louvain, Bruxelles, Belgium.
Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Bruxelles, Belgium.
Am J Physiol Endocrinol Metab. 2020 Sep 1;319(3):E647-E657. doi: 10.1152/ajpendo.00146.2020. Epub 2020 Aug 10.
Our objective was to explore the physiological role of the intestinal endocannabinoids in the regulation of appetite upon short-term exposure to high-fat-diet (HFD) and understand the mechanisms responsible for aberrant gut-brain signaling leading to hyperphagia in mice lacking in the intestinal epithelial cells (IECs). We generated a murine model harboring an inducible NAPE-PLD deletion in IECs (). After an overnight fast, we exposed wild-type (WT) and mice to different forms of lipid challenge (HFD or gavage), and we compared the modification occurring in the hypothalamus, in the vagus nerve, and at endocrine level 30 and 60 min after the stimulation. mice displayed lower hypothalamic levels of -oleoylethanolamine (OEA) in response to HFD. Lower mRNA expression of anorexigenic occurred in the hypothalamus of mice after lipid challenge. This early hypothalamic alteration was not the consequence of impaired vagal signaling in mice. Following lipid administration, WT and mice had similar portal levels of glucagon-like peptide-1 (GLP-1) and similar rates of GLP-1 inactivation. Administration of exendin-4, a full agonist of GLP-1 receptor (GLP-1R), prevented the hyperphagia of mice upon HFD. We conclude that in response to lipid, mice displayed reduced OEA in brain and intestine, suggesting an impairment of the gut-brain axis in this model. We speculated that decreased levels of OEA likely contributes to reduce GLP-1R activation, explaining the observed hyperphagia in this model. Altogether, we elucidated novel physiological mechanisms regarding the gut-brain axis by which intestinal NAPE-PLD regulates appetite rapidly after lipid exposure.
我们的目的是探索肠道内源性大麻素在短期暴露于高脂肪饮食(HFD)时对食欲的调节作用,并了解导致缺乏肠道上皮细胞(IECs)中 的小鼠进食过度的肠道-大脑信号传导异常的机制。我们构建了一个在 IECs 中诱导型 NAPE-PLD 缺失的小鼠模型()。在禁食过夜后,我们使野生型(WT)和 小鼠接受不同形式的脂质刺激(HFD 或灌胃),并在刺激后 30 和 60 分钟比较下丘脑、迷走神经和内分泌水平的变化。与 HFD 相比, 小鼠的下丘脑 - 油酸乙醇胺(OEA)水平较低。脂质刺激后, 小鼠下丘脑的厌食性基因表达降低。这种早期的下丘脑改变不是 小鼠迷走神经信号受损的结果。在给予脂质后,WT 和 小鼠具有相似的门脉 GLP-1(胰高血糖素样肽-1)水平和相似的 GLP-1 失活率。给予 exendin-4,一种 GLP-1 受体(GLP-1R)的完全激动剂,可预防 HFD 引起的 小鼠进食过度。我们的结论是,在脂质刺激下, 小鼠表现出脑和肠道中 OEA 减少,提示该模型中肠道-大脑轴受损。我们推测 OEA 水平降低可能导致 GLP-1R 激活减少,解释了该模型中观察到的进食过度。总之,我们通过该模型阐明了肠道 NAPE-PLD 在脂质暴露后快速调节食欲的肠道-大脑轴的新生理机制。
Am J Physiol Endocrinol Metab. 2020-8-10
Cells. 2020-5-18
Am J Physiol Regul Integr Comp Physiol. 2014-7-15
Nutrients. 2023-7-23
Nat Rev Endocrinol. 2023-5