Department of Biophysics, Graduate School of Science, Kyoto University, 606-8502 Kyoto, Japan.
Department of Biophysics, Graduate School of Science, Kyoto University, 606-8502 Kyoto, Japan
Proc Natl Acad Sci U S A. 2020 Aug 25;117(34):20586-20596. doi: 10.1073/pnas.2005500117. Epub 2020 Aug 10.
While recent experiments revealed that some pioneer transcription factors (TFs) can bind to their target DNA sequences inside a nucleosome, the binding dynamics of their target recognitions are poorly understood. Here we used the latest coarse-grained models and molecular dynamics simulations to study the nucleosome-binding procedure of the two pioneer TFs, Sox2 and Oct4. In the simulations for a strongly positioning nucleosome, Sox2 selected its target DNA sequence only when the target was exposed. Otherwise, Sox2 entropically bound to the dyad region nonspecifically. In contrast, Oct4 plastically bound on the nucleosome mainly in two ways. First, the two POU domains of Oct4 separately bound to the two parallel gyres of the nucleosomal DNA, supporting the previous experimental results of the partial motif recognition. Second, the POU domain of Oct4 favored binding on the acidic patch of histones. Then, simulating the TFs binding to a genomic nucleosome, the nucleosome, we found that the recognition of a pseudo motif by Sox2 induced the local DNA bending and shifted the population of the rotational position of the nucleosomal DNA. The redistributed DNA phase, in turn, changed the accessibility of a distant TF binding site, which consequently affected the binding probability of a second Sox2 or Oct4. These results revealed a nucleosomal DNA-mediated allosteric mechanism, through which one TF binding event can change the global conformation, and effectively regulate the binding of another TF at distant sites. Our simulations provide insights into the binding mechanism of single and multiple TFs on the nucleosome.
虽然最近的实验表明,一些先驱转录因子 (TFs) 可以在核小体内部结合其靶 DNA 序列,但它们靶识别的结合动力学仍知之甚少。在这里,我们使用最新的粗粒模型和分子动力学模拟来研究两种先驱 TFs,Sox2 和 Oct4 的核小体结合过程。在对强定位核小体的模拟中,只有当靶标暴露时,Sox2 才会选择其靶标 DNA 序列。否则,Sox2 会以熵的方式非特异性地结合到二联体区域。相比之下,Oct4 主要以两种方式塑性结合在核小体上。首先,Oct4 的两个 POU 结构域分别结合到核小体 DNA 的两个平行旋回上,这支持了先前关于部分基序识别的实验结果。其次,Oct4 的 POU 结构域倾向于结合在组蛋白的酸性斑块上。然后,模拟 TFs 结合到基因组核小体上,我们发现 Sox2 对伪基序的识别诱导了局部 DNA 弯曲,并改变了核小体 DNA 旋转位置的种群。重新分布的 DNA 相位反过来又改变了遥远 TF 结合位点的可及性,从而影响了第二个 Sox2 或 Oct4 的结合概率。这些结果揭示了一种核小体 DNA 介导的变构机制,通过这种机制,一个 TF 结合事件可以改变全局构象,并有效地调节另一个 TF 在遥远位点的结合。我们的模拟为单个和多个 TFs 在核小体上的结合机制提供了深入的了解。