Suppr超能文献

中国四川盆地龙马溪页岩水吸附和解吸等温线的实验研究

Experimental investigation on water adsorption and desorption isotherms of the Longmaxi shale in the Sichuan Basin, China.

作者信息

Ma Xinhua, Shen Weijun, Li Xizhe, Hu Yong, Liu Xiaohua, Lu Xiaobing

机构信息

Research Institute of Petroleum Exploration & Development, PetroChina, Beijing, 10083, China.

Key Laboratory for Mechanics in Fluid Solid Coupling Systems, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China.

出版信息

Sci Rep. 2020 Aug 10;10(1):13434. doi: 10.1038/s41598-020-70222-8.

Abstract

The understanding of water adsorption and desorption behavior in the shale rocks is of great significance in the reserve estimation, wellbore stability and hydrocarbon extraction in the shale gas reservoirs. However, the water sorption behavior in the shales remains unclear. In this study, water vapor adsorption/desorption isotherms of the Longmaxi shale in the Sichuan Basin, China were conducted at various temperatures (30 °C, 60 °C) and a relative pressure up to 0.97 to understand the water sorption behavior. Then the effects of temperature and shale properties were analyzed, and the water adsorption, hysteresis, saturation and capillary pressure were discussed. The results indicate that water adsorption isotherms of the Longmaxi shale exhibit the type II characteristics. The water molecules initially adsorb on the shale particle/pore surfaces at low relative pressure while the capillary condensation dominates at high relative pressure. Temperature favors the water sorption in the shales at high relative pressure, and the GAB isotherm model is found to be suitable for describe the water adsorption/desorption behavior. The high organic carbon and full bedding are beneficial to water adsorption in the shales while the calcite inhibits the behavior. There exists the hysteresis between water adsorption and desorption at the whole relative pressure, which suggests that the depletion of condensed water from smaller capillary pores is more difficult than that from larger pores, and the chemical interaction contributes to the hysteresis loop for water sorption. The capillary pressure in the shales can be up to the order of several hundreds of MPa, and thus the desorption of water from the shales may not be as easy as the water adsorption due to the high capillary pressure, which results in water retention behavior in the shale gas reservoirs. These results can provide insights into a better understanding of water sorption behavior in the shale so as to optimize extraction conditions and predict gas productivity in the shale gas reservoirs.

摘要

了解页岩中水分的吸附和解吸行为对于页岩气藏的储量估算、井筒稳定性和烃类开采具有重要意义。然而,页岩中的水分吸附行为仍不明确。在本研究中,对中国四川盆地龙马溪页岩在不同温度(30℃、60℃)和高达0.97的相对压力下进行了水蒸气吸附/解吸等温线实验,以了解其水分吸附行为。然后分析了温度和页岩性质的影响,并讨论了水吸附、滞后现象、饱和度和毛细管压力。结果表明,龙马溪页岩的水吸附等温线呈现出Ⅱ型特征。水分子在低相对压力下最初吸附在页岩颗粒/孔隙表面,而在高相对压力下毛细管凝聚起主导作用。温度有利于页岩在高相对压力下的水吸附,并且发现GAB等温线模型适用于描述水吸附/解吸行为。高有机碳含量和完整层理有利于页岩中的水吸附,而方解石则抑制这种行为。在整个相对压力范围内,水吸附和解吸之间存在滞后现象,这表明从较小毛细管孔隙中脱除冷凝水比从较大孔隙中更困难,并且化学相互作用导致了水吸附的滞后环。页岩中的毛细管压力可达数百兆帕的量级,因此由于高毛细管压力,页岩中的水脱附可能不像水吸附那么容易,这导致了页岩气藏中的水滞留行为。这些结果有助于更好地理解页岩中的水吸附行为,从而优化开采条件并预测页岩气藏的气体产量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5adf/7417566/82810204b4a9/41598_2020_70222_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验