Suppr超能文献

基于栈式结构最小二乘支持向量机的深度交叉输出知识迁移。

Deep Cross-Output Knowledge Transfer Using Stacked-Structure Least-Squares Support Vector Machines.

出版信息

IEEE Trans Cybern. 2022 May;52(5):3207-3220. doi: 10.1109/TCYB.2020.3008963. Epub 2022 May 19.

Abstract

This article presents a new deep cross-output knowledge transfer approach based on least-squares support vector machines, called DCOT-LS-SVMs. Its aim is to improve the generalizability of least-squares support vector machines (LS-SVMs) while avoiding the complicated parameter tuning process that occurs in many kernel machines. The proposed approach has two significant characteristics: 1) DCOT-LS-SVMs is inspired by a stacked hierarchical architecture that combines several layer-by-layer LS-SVMs modules. The module that forms the higher layer has additional input features that consider the predictions from all previous modules and 2) cross-output knowledge transfer is used to leverage knowledge from the predictions of the previous module to improve the learning process in the current module. With this approach, the model's parameters, such as a tradeoff parameter C and a kernel width δ , can be randomly assigned to each module in order to greatly simplify the learning process. Moreover, DCOT-LS-SVMs is able to autonomously and quickly decide the extent of the cross-output knowledge transfer between adjacent modules through a fast leave-one-out cross-validation strategy. In addition, we present an imbalanced version of DCOT-LS-SVMs, called IDCOT-LS-SVMs, given that imbalanced datasets are common in real-world scenarios. The effectiveness of the proposed approaches is demonstrated through a comparison with five comparative methods on UCI datasets and with a case study on the diagnosis of prostate cancer.

摘要

本文提出了一种新的基于最小二乘支持向量机(LS-SVM)的深度交叉输出知识转移方法,称为 DCOT-LS-SVM。其目的是在避免许多核机器中复杂的参数调整过程的同时,提高 LS-SVM 的泛化能力。该方法有两个显著特点:1)DCOT-LS-SVM 受堆叠分层结构的启发,结合了几个逐层 LS-SVM 模块。形成更高层的模块具有额外的输入特征,考虑了所有前一个模块的预测;2)交叉输出知识转移用于利用前一个模块的预测知识来改进当前模块的学习过程。通过这种方法,可以随机为每个模块分配模型的参数,如权衡参数 C 和核宽度 δ,从而大大简化学习过程。此外,DCOT-LS-SVM 能够通过快速的留一交叉验证策略自主且快速地决定相邻模块之间交叉输出知识转移的程度。此外,鉴于不平衡数据集在实际场景中很常见,我们提出了 DCOT-LS-SVM 的不平衡版本,称为 IDCOT-LS-SVM。通过在 UCI 数据集上与五种比较方法进行比较,并对前列腺癌诊断进行案例研究,证明了所提出方法的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验