Suppr超能文献

具有超疏水性的全氟烷基功能化共价有机框架用于无水质子传导

Perfluoroalkyl-Functionalized Covalent Organic Frameworks with Superhydrophobicity for Anhydrous Proton Conduction.

作者信息

Wu Xiaowei, Hong You-Lee, Xu Bingqing, Nishiyama Yusuke, Jiang Wei, Zhu Junwu, Zhang Gen, Kitagawa Susumu, Horike Satoshi

机构信息

Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.

RIKEN CLST-JEOL Collaboration Center, Tsurumi, Yokohama, Kanagawa 230-0045, Japan.

出版信息

J Am Chem Soc. 2020 Aug 19;142(33):14357-14364. doi: 10.1021/jacs.0c06474. Epub 2020 Aug 10.

Abstract

The development of anhydrous proton-conducting materials is critical for the fabrication of high-temperature (>100 °C) polymer electrolyte membrane fuel cells (HT-PEMFCs) and remains a significant challenge. Covalent organic frameworks (COFs) are an emerging class of porous crystalline materials with tailor-made nanochannels and hold great potential for ion and molecule transport, but their poor chemical stability poses great challenges in this respect. In this contribution, we present a bottom-up self-assembly strategy to construct perfluoroalkyl-functionalized hydrazone-linked 2D COFs and systematically investigate the effect of different lengths of fluorine chains on their acid stability and proton conductivity. Compared with their nonfluorous parent COFs, fluorinated COFs possess structural ultrastability toward strong acids as a result of enhanced hydrophobicity (water contact angle of 144°). Furthermore, the superhydrophobic 1D nanochannels can serve as robust hosts to accommodate large amounts of phosphonic acid for fast and long-term proton conduction under anhydrous conditions and a wide temperature range. The anhydrous proton conductivity of fluorinated COFs is 4.2 × 10 S cm at 140 °C after HPO doping, which is 4 orders of magnitude higher than their nonfluorous counterparts and among the highest values of doped porous organic frameworks so far. Solid-state NMR studies revealed that HPO forms hydrogen-boding networks with the frameworks and perfluoroalkyl chains of COFs, and most of the HPO molecules are highly dynamic and mobile while the frameworks are rigid, which affords rapid proton transport. This work paves the way for the realization of the target properties of COFs through predesign and functionalization of the pore surface and highlights the great potential of COF nanochannels as a rigid platform for fast ion transportation.

摘要

无水质子传导材料的开发对于高温(>100°C)聚合物电解质膜燃料电池(HT-PEMFCs)的制造至关重要,并且仍然是一项重大挑战。共价有机框架(COFs)是一类新兴的具有定制纳米通道的多孔晶体材料,在离子和分子传输方面具有巨大潜力,但其较差的化学稳定性在这方面带来了巨大挑战。在本论文中,我们提出了一种自下而上的自组装策略来构建全氟烷基功能化的腙连接二维COFs,并系统地研究了不同长度氟链对其酸稳定性和质子传导率的影响。与它们的无氟母体COFs相比,氟化COFs由于疏水性增强(水接触角为144°)而对强酸具有结构超稳定性。此外,超疏水的一维纳米通道可以作为坚固的主体,在无水条件和宽温度范围内容纳大量膦酸以实现快速和长期的质子传导。氟化COFs在140°C经HPO4掺杂后的无水质子传导率为4.2×10-3 S cm-1,比它们的无氟对应物高4个数量级,并且是迄今为止掺杂多孔有机框架的最高值之一。固态NMR研究表明,HPO4与COFs的框架和全氟烷基链形成氢键网络,并且大多数HPO4分子在框架刚性的情况下具有高度的动态性和流动性,这使得质子能够快速传输。这项工作为通过孔表面的预设计和功能化实现COFs的目标性能铺平了道路,并突出了COF纳米通道作为快速离子传输的刚性平台的巨大潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验