College of Computer Engineering and Applied Mathematics, Changsha University, Changsha, 410022, Hunan, China.
Hunan Provincial Key Laboratory of Industrial Internet Technology and Security, Changsha University, Changsha, 410022, Hunan, China.
BMC Bioinformatics. 2020 Aug 12;21(1):355. doi: 10.1186/s12859-020-03663-7.
The accurate annotation of protein functions is of great significance in elucidating the phenomena of life, treating disease and developing new medicines. Various methods have been developed to facilitate the prediction of these functions by combining protein interaction networks (PINs) with multi-omics data. However, it is still challenging to make full use of multiple biological to improve the performance of functions annotation.
We presented NPF (Network Propagation for Functions prediction), an integrative protein function predicting framework assisted by network propagation and functional module detection, for discovering interacting partners with similar functions to target proteins. NPF leverages knowledge of the protein interaction network architecture and multi-omics data, such as domain annotation and protein complex information, to augment protein-protein functional similarity in a propagation manner. We have verified the great potential of NPF for accurately inferring protein functions. According to the comprehensive evaluation of NPF, it delivered a better performance than other competing methods in terms of leave-one-out cross-validation and ten-fold cross validation.
We demonstrated that network propagation, together with multi-omics data, can both discover more partners with similar function, and is unconstricted by the "small-world" feature of protein interaction networks. We conclude that the performance of function prediction depends greatly on whether we can extract and exploit proper functional information of similarity from protein correlations.
准确注释蛋白质功能对于阐明生命现象、治疗疾病和开发新药具有重要意义。已经开发了各种方法,通过将蛋白质相互作用网络 (PINs) 与多组学数据相结合,来促进这些功能的预测。然而,充分利用多种生物学信息来提高功能注释的性能仍然具有挑战性。
我们提出了 NPF(基于网络传播的功能预测),这是一个由网络传播和功能模块检测辅助的综合蛋白质功能预测框架,用于发现与靶蛋白具有相似功能的相互作用伙伴。NPF 利用蛋白质相互作用网络结构和多组学数据(如结构域注释和蛋白质复合物信息)的知识,以传播的方式增强蛋白质-蛋白质功能相似性。我们已经验证了 NPF 用于准确推断蛋白质功能的巨大潜力。根据 NPF 的综合评估,它在留一交叉验证和十折交叉验证方面的性能优于其他竞争方法。
我们证明了网络传播结合多组学数据不仅可以发现更多具有相似功能的伙伴,而且不受蛋白质相互作用网络的“小世界”特征的限制。我们得出的结论是,功能预测的性能在很大程度上取决于我们是否能够从蛋白质相关性中提取和利用适当的相似性功能信息。