Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece.
Department of Physics, National Technical University of Athens (NTUA), Zografou Campus, 15780, Athens, Greece.
Soft Matter. 2020 Sep 16;16(35):8187-8201. doi: 10.1039/d0sm01195a.
In this work, we synthesized poly(ε-caprolactone) (PCL) and three copolyesters of different architectures based on three different alcohols, namely a three arm-copolymer based on 1% glycerol (PCL_Gly), a four arm-copolymer based on 1% pentaerythrytol (PCL_PE), and a linear block copolymer based on ∼50% methoxy-poly(ethylene glycol) (PCL_mPEG), all simultaneously with the ring opening polymerization (ROP) of PCL. Due to their biocompatibility and low toxicity, these systems are envisaged for use in drug delivery and tissue engineering applications. Due to the in situ ROP during the copolyesters synthesis, the molecular weight of PCL, Wm initially ∼62 kg mol-1, drops in the copolymers from ∼60k down to ∼5k. For the structure-properties investigation we employed differential scanning calorimetry (DSC and TMDSC), X-ray diffraction (XRD), nuclear magnetic resonance (NMR), Fourier transform infra red (FTIR) spectroscopy, polarized optical microscopy (POM), broadband dielectric spectroscopy (BDS) and isothermal water sorption. DSC revealed that the crystalline fraction of PCL increases whereas the crystallization rate drops in the copolymers in the order PCL ∼ PCL_Gly > PCL_PE ≫ PCL_mPEG, which coincides with that of decreasing Wm. In PCL_mPEG the major amount of PCL (87%) was found to crystallize while the majority of mPEG (92%) was found amorphous exhibiting constrained amorphous mobility and severely slower/weaker crystallization as compared to neat mPEG. Segmental dynamics in BDS, in agreement with DSC, is similar and in general slow for the samples of star-like structure for Wm ≥ 30k arising from PCL, whereas it is severely faster and enhanced in strength for the linear PCL_mPEG (lower Wm) copolymer arising from mPEG. For the latter system, the data provide indications for the formation of complex structures consisting of many small PCL crystallites surrounded by amorphous mPEG segments with constrained dynamics and severely suppressed hydrophilicity. These effects cannot be easily assessed by conventional XRD and POM, confirming the power of the dielectric technique. The overall recordings indicated that the different polymer architecture results in severe changes in the semicrystalline morphology, which demonstrates the potential for tuning the final product performance (permeability, mechanical).
在这项工作中,我们合成了聚己内酯(PCL)和三种不同结构的共聚酯,它们基于三种不同的醇,即基于 1%甘油的三臂共聚物(PCL_Gly)、基于 1%季戊四醇的四臂共聚物(PCL_PE)和基于约 50%甲氧基聚乙二醇的线性嵌段共聚物(PCL_mPEG),所有这些共聚酯都是通过开环聚合(ROP)合成的。由于其生物相容性和低毒性,这些体系有望用于药物输送和组织工程应用。由于在共聚酯合成过程中存在原位 ROP,PCL 的初始分子量 Wm 从约 62kg/mol 下降到共聚物中的约 5k。为了研究结构-性能关系,我们采用了差示扫描量热法(DSC 和 TMDSC)、X 射线衍射(XRD)、核磁共振(NMR)、傅里叶变换红外(FTIR)光谱、偏光显微镜(POM)、宽带介电谱(BDS)和等温吸水。DSC 表明,在共聚物中,PCL 的结晶分数增加,而结晶速率下降,顺序为 PCL∼PCL_Gly>PCL_PE≫PCL_mPEG,这与 Wm 的降低相吻合。在 PCL_mPEG 中,发现大部分 PCL(87%)结晶,而大部分 mPEG(92%)呈无定形状态,表现出受约束的无定形流动性和比纯 mPEG 慢/弱的结晶。与 DSC 一致,BDS 中的分子动力学相似,一般对于 Wm≥30k 的星型结构样品较慢,这是由于 PCL 的存在,而对于线性 PCL_mPEG(较低的 Wm)共聚物则快得多,强度也增强,这是由于 mPEG 的存在。对于后者体系,数据表明形成了由许多小的 PCL 微晶组成的复杂结构,这些微晶被无定形的 mPEG 段包围,具有受约束的动力学和严重抑制的亲水性。这些影响不容易通过常规的 XRD 和 POM 来评估,这证实了介电技术的强大。总的来说,记录表明不同的聚合物结构导致半结晶形态发生严重变化,这表明有可能调整最终产品的性能(渗透性、机械性能)。