Suppr超能文献

基于迟滞估计的压电纳米定位平台频率整形滑模控制

Frequency-shaped sliding mode control of piezoelectric nano-stages with hysteresis estimation.

作者信息

Zhang Yangming, Yan Peng, Zhang Zhen

机构信息

School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China.

Key Laboratory of High-efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China.

出版信息

ISA Trans. 2020 Dec;107:340-349. doi: 10.1016/j.isatra.2020.08.002. Epub 2020 Aug 7.

Abstract

Due to the emerging applications of ultra-high precision scanning in many engineering fields, dynamical tracking of desired reference trajectories for nano-stages has attracted a lot of significant research. An adaptive integral sliding mode control (AISMC) framework in combination with frequency-shaped optimization and hysteresis observer is proposed to improve tracking performance of piezoelectric nano-stages in this article, where hysteresis nonlinearities, undesired high-frequency dynamics and model uncertainties are the major issues that limit high-precision dynamic tracking. The convergence regarding both the observation error of the hysteresis state and the tracking error of the considered system is analyzed. By comparison with representative results in the literature, the experimental studies conducted on an multi-axis nano-stage are used to verify the proposed approach has a substantial improvement in terms of robustness and tracking performance.

摘要

由于超高精度扫描在许多工程领域的新兴应用,纳米级平台期望参考轨迹的动态跟踪已吸引了大量重要研究。本文提出了一种结合频率整形优化和迟滞观测器的自适应积分滑模控制(AISMC)框架,以提高压电纳米级平台的跟踪性能,其中迟滞非线性、不期望的高频动态特性和模型不确定性是限制高精度动态跟踪的主要问题。分析了迟滞状态观测误差和所考虑系统跟踪误差的收敛性。通过与文献中的代表性结果进行比较,在多轴纳米级平台上进行的实验研究用于验证所提出的方法在鲁棒性和跟踪性能方面有显著提高。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验