Suppr超能文献

具有随机跳跃项的非厄米性Su-Schrieffer-Heeger模型本征值的统计特性

Statistical properties of eigenvalues of the non-Hermitian Su-Schrieffer-Heeger model with random hopping terms.

作者信息

Mochizuki Ken, Hatano Naomichi, Feinberg Joshua, Obuse Hideaki

机构信息

Department of Applied Physics, Hokkaido University, Sapporo 060-8628, Japan.

Institute of Industrial Science, University of Tokyo, Kashiwa 277-8574, Japan.

出版信息

Phys Rev E. 2020 Jul;102(1-1):012101. doi: 10.1103/PhysRevE.102.012101.

Abstract

We explore the eigenvalue statistics of a non-Hermitian version of the Su-Schrieffer-Heeger model, with imaginary on-site potentials and randomly distributed hopping terms. We find that owing to the structure of the Hamiltonian, eigenvalues can be purely real in a certain range of parameters, even in the absence of parity and time-reversal symmetry. As it turns out, in this case of purely real spectrum, the level statistics is that of the Gaussian orthogonal ensemble. This demonstrates a general feature which we clarify that a non-Hermitian Hamiltonian whose eigenvalues are purely real can be mapped to a Hermitian Hamiltonian which inherits the symmetries of the original Hamiltonian. When the spectrum contains imaginary eigenvalues, we show that the density of states (DOS) vanishes at the origin and diverges at the spectral edges on the imaginary axis. We show that the divergence of the DOS originates from the Dyson singularity in chiral-symmetric one-dimensional Hermitian systems and derive analytically the asymptotes of the DOS which is different from that in Hermitian systems.

摘要

我们研究了具有虚数在位势和随机分布跳跃项的非厄米型Su-Schrieffer-Heeger模型的本征值统计。我们发现,由于哈密顿量的结构,即使在没有宇称和时间反演对称性的情况下,本征值在一定参数范围内也可以是纯实数。事实证明,在这种纯实数谱的情况下,能级统计是高斯正交系综的统计。这展示了一个普遍特征,我们阐明其为:本征值为纯实数的非厄米哈密顿量可以映射到一个继承了原哈密顿量对称性的厄米哈密顿量。当谱包含虚数本征值时,我们表明态密度(DOS)在原点处消失,并在虚轴上的谱边缘处发散。我们表明,DOS的发散源于手征对称一维厄米系统中的戴森奇点,并解析推导了与厄米系统不同的DOS渐近线。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验