Suppr超能文献

通过统计耦合分析解码跨膜蛋白酶超家族的功能进化。

Decoding the Functional Evolution of an Intramembrane Protease Superfamily by Statistical Coupling Analysis.

机构信息

Department of Molecular Biology & Genetics, Johns Hopkins University School of Medicine, Room 507 PCTB, 725 North Wolfe Street, Baltimore, MD 21205, USA.

Department of Molecular Biology & Genetics, Johns Hopkins University School of Medicine, Room 507 PCTB, 725 North Wolfe Street, Baltimore, MD 21205, USA.

出版信息

Structure. 2020 Dec 1;28(12):1329-1336.e4. doi: 10.1016/j.str.2020.07.015. Epub 2020 Aug 13.

Abstract

How evolution endowed membrane enzymes with specific abilities, and then tuned them to the needs of different cells, is poorly understood. We examined whether statistical coupling analysis (SCA) can be applied to rhomboid proteases, the most widely distributed membrane proteins, to identify amino acid "sectors" that evolved independently to acquire a specific function. SCA revealed three coevolving residue networks that form two sectors. Sector 1 determines substrate specificity, but is paradoxically scattered across the protein, consistent with dynamics driving rhomboid-substrate interactions. Sector 2 is hierarchically composed of a subgroup that maintains the catalytic site, and another that maintains the overall fold, forecasting evolution of rhomboid pseudoproteases. Changing only sector 1 residues of a "recipient" rhomboid converted its substrate specificity and catalytic efficiency to that of the "donor." While used only twice over a decade ago, SCA should be generally applicable to membrane proteins, and our sector grafting approach provides an efficient strategy for designing enzymes.

摘要

进化是如何赋予膜酶特定的能力,然后根据不同细胞的需求对其进行调整,目前还知之甚少。我们研究了统计耦合分析(SCA)是否可以应用于广泛分布的膜蛋白——类蛋白水解酶,以识别出独立进化以获得特定功能的氨基酸“区域”。SCA 揭示了形成两个区域的三个共同进化的残基网络。第 1 区域决定了底物特异性,但却矛盾地分散在整个蛋白质中,这与驱动类蛋白水解酶-底物相互作用的动力学一致。第 2 区由一个维持催化位点的子组和另一个维持整体折叠的子组组成,预测了类蛋白假酶的进化。仅改变“受体”类蛋白水解酶的第 1 区域残基,就可以将其底物特异性和催化效率转换为“供体”的。虽然 SCA 仅在十年前使用过两次,但它应该普遍适用于膜蛋白,并且我们的区域嫁接方法为设计酶提供了一种有效的策略。

相似文献

7
Structure and mechanism of rhomboid protease.菱形蛋白酶的结构与机制。
J Biol Chem. 2013 May 31;288(22):15430-6. doi: 10.1074/jbc.R112.422378. Epub 2013 Apr 12.

本文引用的文献

2
Unraveling the complexity of γ-secretase.解析 γ-分泌酶的复杂性。
Semin Cell Dev Biol. 2020 Sep;105:3-11. doi: 10.1016/j.semcdb.2020.01.005. Epub 2020 Jan 21.
7
Mechanistic insights into ER-associated protein degradation.内质网相关蛋白降解的机制研究进展。
Curr Opin Cell Biol. 2018 Aug;53:22-28. doi: 10.1016/j.ceb.2018.04.004. Epub 2018 Apr 30.
8
Membrane properties that shape the evolution of membrane enzymes.膜特性塑造膜酶的演化。
Curr Opin Struct Biol. 2018 Aug;51:80-91. doi: 10.1016/j.sbi.2018.03.013. Epub 2018 Mar 27.
9
Applications of sequence coevolution in membrane protein biochemistry.序列共进化在膜蛋白生物化学中的应用。
Biochim Biophys Acta Biomembr. 2018 Apr;1860(4):895-908. doi: 10.1016/j.bbamem.2017.10.004. Epub 2017 Oct 7.
10
Applications of Single-Molecule Methods to Membrane Protein Folding Studies.单分子方法在膜蛋白折叠研究中的应用。
J Mol Biol. 2018 Feb 16;430(4):424-437. doi: 10.1016/j.jmb.2017.05.021. Epub 2017 May 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验