Wang Kun, Lu Zhenjiang, Li Yizhao, Wang Shiqiang, Cao Yali
Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830046, P. R. China.
School of Chemistry and Chemical Engineering, Xinjiang University, Urumqi, Xinjiang, 830046, P. R. China.
ChemSusChem. 2020 Oct 21;13(20):5539-5548. doi: 10.1002/cssc.202001619. Epub 2020 Aug 31.
Heterojunction engineering is a fundamental strategy to develop efficient electrocatalysts for the oxygen reduction reaction by tuning electronic properties through interfacial cooperation. In this study, a heterojunction electrocatalyst consisting of bimetallic carbide Co ZnC and cobalt encapsulated within N-doped carbon nanotubes (Co ZnC/Co@NCNTs) is synthesized by a facile two-step ion exchange-thermolysis pathway. Co ZnC/Co@NCNTs effectively promotes interfacial charge transport between the different components with optimizes adsorption and desorption of intermediate products at the heterointerface. In situ-grown N-doped carbon nanotubes (NCNTs) not only improve the electrical conductivity but also suppress the oxidation of transition metal nanoparticles in alkaline media. Moreover, the abundant nitrogen types (pyridinic N, Co-N , and graphitic nitrogen) in the carbon skeleton provide more active sites for oxygen adsorption. Benefitting from this optimized structure, Co ZnC/Co@NCNTs hybrid not only demonstrates excellent oxygen reduction activity, with a half-wave potential of 0.83 V and fast mass transport with limited current density of 6.23 mA cm , but also exhibits superior stability and methanol tolerance, which surpass those of commercial Pt/C catalysts. This work provides an effective heterostructure for interfacial electronic modulation to improve electrocatalytic performance.
异质结工程是通过界面协同调节电子性质来开发用于氧还原反应的高效电催化剂的基本策略。在本研究中,通过简便的两步离子交换 - 热解途径合成了一种由双金属碳化物CoZnC和封装在氮掺杂碳纳米管中的钴组成的异质结电催化剂(CoZnC/Co@NCNTs)。CoZnC/Co@NCNTs有效地促进了不同组分之间的界面电荷传输,优化了中间产物在异质界面处的吸附和解吸。原位生长的氮掺杂碳纳米管(NCNTs)不仅提高了电导率,还抑制了碱性介质中过渡金属纳米颗粒的氧化。此外,碳骨架中丰富的氮类型(吡啶氮、Co-N和石墨氮)为氧吸附提供了更多活性位点。受益于这种优化结构,CoZnC/Co@NCNTs杂化物不仅表现出优异的氧还原活性,半波电位为0.83 V,极限电流密度为6.23 mA cm时具有快速的质量传输,而且还表现出优于商业Pt/C催化剂的稳定性和甲醇耐受性。这项工作为界面电子调制提供了一种有效的异质结构,以提高电催化性能。