Suppr超能文献

连续传代对使用蛋白质组学分析的蛋白质表达的影响。

Impact of Sequential Passaging on Protein Expression of Using Proteomics Analysis.

作者信息

Alhajouj Mohammed S, Alsharif Ghadah S, Mirza Ahmed A

机构信息

Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80324, Jeddah 21859, Saudi Arabia.

出版信息

Int J Microbiol. 2020 Jul 30;2020:2716202. doi: 10.1155/2020/2716202. eCollection 2020.

Abstract

Urinary tract infection (UTI) is one of the most prevalent bacterial infections in the world affecting the bladder and the kidney. () is the main causative agent of 80-90% of community-acquired UTIs, about 40% of nosocomial UTIs, and 25% of recurrent UTIs. The field of proteomics has emerged as a great tool to analyze expressed proteins to identify possible biomarkers associated with many pathological states and, to the same extent, those associated with bacterial pathogenesis and their ability to cause recurrent infections. Here, in a descriptive cross-sectional pilot study, we employed proteomic techniques to investigate the effects of environmental stress on protein profiles of simulated by sequential passaging of samples from patients with UTIs to screen for unique proteins that arise under stressful environment and could aid in the early detection of UTIs. Four urine samples were collected from individuals with recurrent UTI and sequentially subcultured; protein samples were extracted from bacterial pellets and analyzed using 2-dimensional gel electrophoresis (2DGE). Protein spots of interest arising from changes in the protein profile were analyzed using liquid chromatography-mass spectrometry (LC-MS/MS) and matched against known databases to identify related proteins. We identified ATPB_ECOBW, ASPA ECOLI, DPS ECOL6, and DCEB ECOLI as proteins associated with higher passaging. We concluded that passaging resulted in identifiable changes in the protein profile of , namely, proteins that are associated with survival and possible adaptation of bacteria, suggestive of factors contributing to antibiotic resistance and recurrent UTIs. Furthermore, our method could be further used to identify indicator-protein candidates that could be a part of a growing protein database to diagnose and identify causative agents in UTIs.

摘要

尿路感染(UTI)是世界上最常见的细菌感染之一,会影响膀胱和肾脏。()是80%-90%的社区获得性UTI、约40%的医院获得性UTI以及25%的复发性UTI的主要病原体。蛋白质组学领域已成为一种强大的工具,用于分析表达的蛋白质,以识别与许多病理状态相关的潜在生物标志物,同样也用于识别与细菌发病机制及其导致复发性感染能力相关的生物标志物。在此,在一项描述性横断面试点研究中,我们采用蛋白质组学技术,通过对UTI患者样本进行连续传代来模拟环境应激对(此处原文缺失相关细菌名称)蛋白质谱的影响,以筛选在应激环境下出现的独特蛋白质,这些蛋白质可能有助于UTI的早期检测。从复发性UTI患者中收集了4份尿液样本并进行连续传代培养;从细菌沉淀中提取蛋白质样本,并使用二维凝胶电泳(2DGE)进行分析。使用液相色谱-质谱联用(LC-MS/MS)分析蛋白质谱变化产生的感兴趣的蛋白质斑点,并与已知数据库进行比对以识别相关蛋白质。我们确定ATPB_ECOBW、ASPA ECOLI、DPS ECOL6和DCEB ECOLI为与传代次数增加相关的蛋白质。我们得出结论,传代导致了(此处原文缺失相关细菌名称)蛋白质谱出现可识别的变化,即与细菌存活和可能的适应性相关的蛋白质,这提示了导致抗生素耐药性和复发性UTI的因素。此外,我们的方法可进一步用于识别指示蛋白候选物,这些候选物可能成为不断增长的蛋白质数据库的一部分,以诊断和识别UTI的病原体。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7002/7414335/7a752ac8df75/ijmicro2020-2716202.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验