Suppr超能文献

液态水中的多相大气化学:有机气溶胶的影响与可控性

Mulitphase Atmospheric Chemistry in Liquid Water: Impacts and Controllability of Organic Aerosol.

作者信息

Carlton Annmarie G, Christiansen Amy E, Flesch Madison M, Hennigan Christopher J, Sareen Neha

机构信息

Department of Chemistry, University of California, Irvine, California 92697, United States.

Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States.

出版信息

Acc Chem Res. 2020 Sep 15;53(9):1715-1723. doi: 10.1021/acs.accounts.0c00301. Epub 2020 Aug 17.

Abstract

Liquid water is a dominant and critical tropospheric constituent. Over polluted land masses low level cumulus clouds interact with boundary layer aerosol. The planetary boundary layer (PBL) is the lowest atmospheric layer and is directly influenced by Earth's surface. Water-aerosol interactions are critical to processes that govern the fate and transport of trace species in the Earth system and their impacts on air quality, radiative forcing, and regional hydrological cycling. In the PBL, air parcels rise adiabatically from the surface, and anthropogenically influenced hygroscopic aerosols take up water and serve as cloud condensation nuclei (CCN) to form clouds. Water-soluble gases partition to liquid water in wet aerosols and cloud droplets and undergo aqueous-phase photochemistry. Most cloud droplets evaporate, and low volatility material formed during aqueous phase chemistry remains in the condensed phase and adds to aerosol mass. The resulting cloud-processed aerosol has different physicochemical properties compared to the original CCN. Organic species that undergo multiphase chemistry in atmospheric liquid water transform gases to highly concentrated, nonideal ionic aqueous solutions and form secondary organic aerosol (SOA). In recent years, SOA formation modulated by atmospheric waters has received considerable interest.Key uncertainties are related to the chemical nature of hygroscopic aerosols that become CCN and their interaction with organic species. Gas-to-droplet or gas-to-aqueous aerosol partitioning of organic compounds is affected by the intrinsic chemical properties of the organic species in addition to the pre-existing condensed phase. Environmentally relevant conditions for atmospheric aerosol are nonideal. Salt identity and concentration, in addition to aerosol phase state, can dramatically affect organic gas miscibility for many compounds, in particular when ionic strength and salt molality are outside the bounds of limiting laws. For example, Henry's law and Debye-Hückel theory are valid only for dilute aqueous systems uncharacteristic of real atmospheric conditions. Chemical theory is incomplete, and at ambient conditions, this chemistry plays a determining role in total aerosol mass and particle size, controlling factors for air quality and climate-relevant aerosol properties.Accurate predictive skill to understand the impacts of societal choices and policies on air quality and climate requires that models contain correct chemical mechanisms and appropriate feedbacks. Globally, SOA is a dominant contributor to the atmospheric organic aerosol burden, and most mass can be traced back to precursor gas-phase volatile organic compounds (VOCs) emitted from the biosphere. However, organic aerosol concentrations in the Amazon Rainforest, the largest emitter of biogenic VOCs, are generally lower than in U.S. national parks. The Interagency Monitoring of Protected Visual Environments (IMPROVE) air quality network, with sites located predominantly in national parks, provides the longest continuous record of organic aerosol measurements in the U.S. Analysis of IMPROVE data provides a useful chemical climatology of changing air resources in response to environmental rules and shifting economic trends. IMPROVE data provides an excellent test bed for case studies to assess model skill to accurately predict changes in organic aerosol concentrations in the context of a changing climate.

摘要

液态水是对流层的主要且关键的组成部分。在污染严重的陆地上空,低层积云与边界层气溶胶相互作用。行星边界层(PBL)是最低的大气层,直接受地球表面影响。水 - 气溶胶相互作用对于控制地球系统中痕量物质的归宿和传输及其对空气质量、辐射强迫和区域水文循环的影响的过程至关重要。在行星边界层中,气块从地表绝热上升,受人为影响的吸湿性气溶胶吸收水分并作为云凝结核(CCN)形成云。水溶性气体在湿气溶胶和云滴中分配到液态水中,并经历水相光化学过程。大多数云滴蒸发,水相化学过程中形成的低挥发性物质保留在凝聚相中并增加气溶胶质量。由此产生的经过云处理的气溶胶与原始云凝结核相比具有不同的物理化学性质。在大气液态水中经历多相化学过程的有机物种将气体转化为高度浓缩的非理想离子水溶液,并形成二次有机气溶胶(SOA)。近年来,由大气水调节的二次有机气溶胶形成受到了相当大的关注。关键的不确定性与成为云凝结核的吸湿性气溶胶的化学性质及其与有机物种的相互作用有关。有机化合物从气体到液滴或从气体到水相气溶胶的分配除了受预先存在的凝聚相影响外,还受有机物种的固有化学性质影响。大气气溶胶的环境相关条件是非理想的。盐的种类和浓度,除了气溶胶的相态外,会显著影响许多化合物的有机气体混溶性,特别是当离子强度和盐质量摩尔浓度超出极限定律范围时。例如,亨利定律和德拜 - 休克尔理论仅适用于与实际大气条件不同的稀水溶液系统。化学理论并不完善,在环境条件下,这种化学过程在总气溶胶质量和粒径方面起着决定性作用,而总气溶胶质量和粒径是空气质量和与气候相关的气溶胶特性的控制因素。要准确预测社会选择和政策对空气质量和气候的影响,模型需要包含正确的化学机制和适当的反馈。在全球范围内,二次有机气溶胶是大气有机气溶胶负荷的主要贡献者,并且大多数质量可追溯到生物圈排放的前体气相挥发性有机化合物(VOCs)。然而,生物源挥发性有机化合物最大排放源亚马逊雨林中的有机气溶胶浓度通常低于美国国家公园。主要位于国家公园的保护视觉环境跨部门监测(IMPROVE)空气质量网络提供了美国最长的有机气溶胶连续测量记录。对IMPROVE数据的分析提供了一个有用的化学气候学,用于了解空气资源如何响应环境规则和经济趋势变化。IMPROVE数据为案例研究提供了一个极好的试验台,以评估模型在不断变化的气候背景下准确预测有机气溶胶浓度变化的能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验