Suppr超能文献

模拟生物质燃烧酚类物质的新型水相粒子和云化学过程及其形成二次有机气溶胶的潜力。

Modeling Novel Aqueous Particle and Cloud Chemistry Processes of Biomass Burning Phenols and Their Potential to Form Secondary Organic Aerosols.

机构信息

Pacific Northwest National Laboratory, Richland, Washington 99352, United States.

Department of Land, Air and Water Resources, University of California, Davis, California 95616-8627, United States.

出版信息

Environ Sci Technol. 2024 Feb 27;58(8):3776-3786. doi: 10.1021/acs.est.3c07762. Epub 2024 Feb 12.

Abstract

Phenols emitted from biomass burning contribute significantly to secondary organic aerosol (SOA) formation through the partitioning of semivolatile products formed from gas-phase chemistry and multiphase chemistry in aerosol liquid water and clouds. The aqueous-phase SOA (aqSOA) formed via hydroxyl radical (OH), singlet molecular oxygen (O*), and triplet excited states of organic compounds (C*), which oxidize dissolved phenols in the aqueous phase, might play a significant role in the evolution of organic aerosol (OA). However, a quantitative and predictive understanding of aqSOA has been challenging. Here, we develop a stand-alone box model to investigate the formation of SOA from gas-phase OH chemistry and aqSOA formed by the dissolution of phenols followed by their aqueous-phase reactions with OH, O*, and C* in cloud droplets and aerosol liquid water. We investigate four phenolic compounds, i.e., phenol, guaiacol, syringol, and guaiacyl acetone (GA), which represent some of the key potential sources of aqSOA from biomass burning in clouds. For the same initial precursor organic gas that dissolves in aerosol/cloud liquid water and subsequently reacts with aqueous phase oxidants, we predict that the aqSOA formation potential (defined as aqSOA formed per unit dissolved organic gas concentration) of these phenols is higher than that of isoprene-epoxydiol (IEPOX), a well-known aqSOA precursor. Cloud droplets can dissolve a broader range of soluble phenols compared to aqueous aerosols, since the liquid water contents of aerosols are orders of magnitude smaller than cloud droplets. Our simulations suggest that highly soluble and reactive multifunctional phenols like GA would predominantly undergo cloud chemistry within cloud layers, while gas-phase chemistry is likely to be more important for less soluble phenols. But in the absence of clouds, the condensation of low-volatility products from gas-phase oxidation followed by their reversible partitioning to organic aerosols dominates SOA formation, while the SOA formed through aqueous aerosol chemistry increases with relative humidity (RH), approaching 40% of the sum of gas and aqueous aerosol chemistry at 95% RH for GA. Our model developments of biomass-burning phenols and their aqueous chemistry can be readily implemented in regional and global atmospheric chemistry models to investigate the aqueous aerosol and cloud chemistry of biomass-burning organic gases in the atmosphere.

摘要

生物质燃烧排放的酚类物质通过气相化学和气溶胶液相和云相中多相化学形成的半挥发性产物的分配,对二次有机气溶胶(SOA)的形成有重要贡献。通过羟基自由基(OH)、单重态分子氧(O*)和有机化合物三重激发态(C*)形成的水相 SOA(aqSOA)氧化溶解在水相中的酚类物质,可能在有机气溶胶(OA)的演化中起重要作用。然而,对 aqSOA 的定量和预测性理解一直具有挑战性。在这里,我们开发了一个独立的箱式模型,以研究气相 OH 化学形成的 SOA 以及通过酚类物质在气溶胶/云液水中的溶解以及随后与 OH、O和 C在云滴和气溶胶液水中的水相反应形成的 aqSOA。我们研究了四种酚类化合物,即苯酚、愈创木酚、丁香酚和愈创木基丙酮(GA),它们代表了生物质燃烧中一些潜在的 aqSOA 来源。对于溶解在气溶胶/云液水中并随后与水相氧化剂反应的相同初始前体有机气体,我们预测这些酚类物质的 aqSOA 形成潜力(定义为单位溶解有机气体浓度形成的 aqSOA)高于异戊二烯环氧化物(IEPOX),IEPOX 是一种众所周知的 aqSOA 前体。与气溶胶相比,云滴可以溶解更广泛范围的可溶性酚类物质,因为气溶胶中的液态水含量比云滴小几个数量级。我们的模拟表明,像 GA 这样高度可溶性和反应性的多功能酚类物质主要在云层内发生云化学,而气相化学对于可溶性较低的酚类物质可能更为重要。但是在没有云的情况下,气相氧化的低挥发性产物的凝结及其可逆分配到有机气溶胶中占主导地位,而通过水相气溶胶化学形成的 SOA 随着相对湿度(RH)的增加而增加,在 95%RH 时,GA 的气相和水相气溶胶化学的总和接近 40%。我们对生物质燃烧酚类物质及其水相化学的模型发展可以很容易地在区域和全球大气化学模型中实施,以研究大气中生物质燃烧有机气体的水相气溶胶和云化学。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验