Chakrabarti Sumita, Liu Nai-Jiang, Gintzler Alan R
Department Obstetrics and Gynecology, SUNY Downstate Health Sciences University, 450 Clarkson Ave, Brooklyn, NY, 11203, USA.
Cell Mol Neurobiol. 2021 Jul;41(5):855-862. doi: 10.1007/s10571-020-00934-y. Epub 2020 Aug 17.
Opioid dose escalation to effectively control pain is often linked to the current prescription opioid abuse epidemic. This creates social as well as medical imperatives to better understand the mechanistic underpinnings of opioid tolerance to develop interventions that minimize it, thereby maximizing the analgesic effectiveness of opioids. Profound opioid analgesic tolerance can be observed in the absence of mu-opioid receptor (MOR) downregulation, aggregate MOR G protein uncoupling, and MOR desensitization, in the absence of impaired G protein coupled receptor kinase phosphorylation, arrestin binding, or endocytosis. Thus, we have explored alternative biochemical sequelae that might better account for opioid analgesic tolerance. Our findings indicate that substantial plasticity among upstream and downstream components of opioid receptor signaling and the emergence of alternative signaling pathways are major contributors to opioid analgesic tolerance. An exemplar of this plasticity is our findings that chronic morphine upregulates the MOR variants MOR-1B2 and MOR-1C1 and phosphorylation of their C-terminal sites not present in MOR-1, events causally associated with the chronic morphine-induced shift in MOR G protein coupling from predominantly GG inhibitory to G-stimulatory adenylyl cyclase signaling. The unique feature(s) of these variants that underlies their susceptibility to adapting to chronic morphine by altering the nature of their G protein coupling reveals the richness and pliability of MOR signaling that is enabled by generating a wide diversity of MOR variants. Furthermore, given differential anatomical expression patterns of MOR variants, MOR splice variant-dependent adaptations to chronic morphine could enable mechanistic underpinnings of tolerance and dependence that are CNS region- and cell-specific.
为有效控制疼痛而增加阿片类药物剂量的做法,常常与当前处方阿片类药物滥用的流行情况相关联。这就产生了社会和医学上的迫切需求,即更好地理解阿片类药物耐受性的机制基础,以便开发出能将其降至最低的干预措施,从而最大限度地提高阿片类药物的镇痛效果。在没有μ-阿片受体(MOR)下调、MOR G蛋白聚集解偶联以及MOR脱敏的情况下,在没有G蛋白偶联受体激酶磷酸化受损、抑制蛋白结合或内吞作用的情况下,仍可观察到深度的阿片类镇痛耐受性。因此,我们探索了可能更好地解释阿片类镇痛耐受性的其他生化后果。我们的研究结果表明,阿片受体信号传导的上游和下游成分之间的显著可塑性以及替代信号通路的出现,是阿片类镇痛耐受性的主要促成因素。这种可塑性的一个例证是,我们发现慢性吗啡会上调MOR变体MOR-1B2和MOR-1C1,并使其C末端位点发生磷酸化,而这些位点在MOR-1中并不存在,这些事件与慢性吗啡诱导的MOR G蛋白偶联从主要的GG抑制性向G刺激性腺苷酸环化酶信号传导的转变存在因果关系。这些变体的独特特征在于,它们通过改变G蛋白偶联的性质来适应慢性吗啡,这揭示了通过产生多种MOR变体而实现的MOR信号传导的丰富性和柔韧性。此外,鉴于MOR变体的不同解剖学表达模式,MOR剪接变体对慢性吗啡的依赖性适应可能会导致耐受性和依赖性的机制基础具有中枢神经系统区域和细胞特异性。