Reiman Derek, Farhat Ali M, Dai Yang
Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA.
College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
Methods Mol Biol. 2021;2190:249-266. doi: 10.1007/978-1-0716-0826-5_12.
Accurate prediction of the host phenotypes from a microbial sample and identification of the associated microbial markers are important in understanding the impact of the microbiome on the pathogenesis and progression of various diseases within the host. A deep learning tool, PopPhy-CNN, has been developed for the task of predicting host phenotypes using a convolutional neural network (CNN). By representing samples as annotated taxonomic trees and further representing these trees as matrices, PopPhy-CNN utilizes the CNN's innate ability to explore locally similar microbes on the taxonomic tree. Furthermore, PopPhy-CNN can be used to evaluate the importance of each taxon in the prediction of host status. Here, we describe the underlying methodology, architecture, and core utility of PopPhy-CNN. We also demonstrate the use of PopPhy-CNN on a microbial dataset.
从微生物样本准确预测宿主表型并识别相关的微生物标志物,对于理解微生物组对宿主体内各种疾病的发病机制和进展的影响至关重要。一种深度学习工具PopPhy-CNN已被开发用于使用卷积神经网络(CNN)预测宿主表型的任务。通过将样本表示为带注释的分类树,并进一步将这些树表示为矩阵,PopPhy-CNN利用CNN在分类树上探索局部相似微生物的固有能力。此外,PopPhy-CNN可用于评估每个分类单元在预测宿主状态中的重要性。在这里,我们描述了PopPhy-CNN的基础方法、架构和核心用途。我们还展示了PopPhy-CNN在微生物数据集上的应用。