Suppr超能文献

CoV-AbDab:冠状病毒抗体数据库。

CoV-AbDab: the coronavirus antibody database.

机构信息

Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford OX1 3LB, UK.

出版信息

Bioinformatics. 2021 May 5;37(5):734-735. doi: 10.1093/bioinformatics/btaa739.

Abstract

MOTIVATION

The emergence of a novel strain of betacoronavirus, SARS-CoV-2, has led to a pandemic that has been associated with over 700 000 deaths as of August 5, 2020. Research is ongoing around the world to create vaccines and therapies to minimize rates of disease spread and mortality. Crucial to these efforts are molecular characterizations of neutralizing antibodies to SARS-CoV-2. Such antibodies would be valuable for measuring vaccine efficacy, diagnosing exposure and developing effective biotherapeutics. Here, we describe our new database, CoV-AbDab, which already contains data on over 1400 published/patented antibodies and nanobodies known to bind to at least one betacoronavirus. This database is the first consolidation of antibodies known to bind SARS-CoV-2 as well as other betacoronaviruses such as SARS-CoV-1 and MERS-CoV. It contains relevant metadata including evidence of cross-neutralization, antibody/nanobody origin, full variable domain sequence (where available) and germline assignments, epitope region, links to relevant PDB entries, homology models and source literature.

RESULTS

On August 5, 2020, CoV-AbDab referenced sequence information on 1402 anti-coronavirus antibodies and nanobodies, spanning 66 papers and 21 patents. Of these, 1131 bind to SARS-CoV-2.

AVAILABILITYAND IMPLEMENTATION

CoV-AbDab is free to access and download without registration at http://opig.stats.ox.ac.uk/webapps/coronavirus. Community submissions are encouraged.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

一种新型β冠状病毒(SARS-CoV-2)的出现导致了一场大流行,截至 2020 年 8 月 5 日,该大流行病已导致超过 70 万人死亡。世界各地正在进行研究,以开发疫苗和疗法来最大限度地降低疾病传播和死亡率。这些努力的关键是对 SARS-CoV-2 的中和抗体进行分子特征分析。这些抗体对于衡量疫苗的功效、诊断暴露情况以及开发有效的生物疗法非常有价值。在这里,我们描述了我们的新数据库 CoV-AbDab,该数据库已经包含了超过 1400 种已发表/已获得专利的抗体和纳米抗体的数据,这些抗体和纳米抗体已知可与至少一种β冠状病毒结合。该数据库是第一个整合了已知可与 SARS-CoV-2 以及其他β冠状病毒(如 SARS-CoV-1 和 MERS-CoV)结合的抗体的数据库。它包含了相关的元数据,包括交叉中和的证据、抗体/纳米抗体的起源、完整的可变区序列(如有)和胚系分配、表位区域、与相关 PDB 条目、同源模型和来源文献的链接。

结果

截至 2020 年 8 月 5 日,CoV-AbDab 参考了 1402 种抗冠状病毒抗体和纳米抗体的序列信息,这些信息涵盖了 66 篇论文和 21 项专利。其中,1131 种可与 SARS-CoV-2 结合。

可用性和实现

无需注册即可免费访问和下载 CoV-AbDab,网址为 http://opig.stats.ox.ac.uk/webapps/coronavirus。鼓励社区提交。

补充信息

补充数据可在 Bioinformatics 在线获取。

相似文献

1
CoV-AbDab: the coronavirus antibody database.
Bioinformatics. 2021 May 5;37(5):734-735. doi: 10.1093/bioinformatics/btaa739.
2
Pan-beta-coronavirus subunit vaccine prevents SARS-CoV-2 Omicron, SARS-CoV, and MERS-CoV challenge.
J Virol. 2024 Sep 17;98(9):e0037624. doi: 10.1128/jvi.00376-24. Epub 2024 Aug 27.
4
Perspectives on monoclonal antibody therapy as potential therapeutic intervention for Coronavirus disease-19 (COVID-19).
Asian Pac J Allergy Immunol. 2020 Mar;38(1):10-18. doi: 10.12932/AP-200220-0773.
6
Dromedary camels as a natural source of neutralizing nanobodies against SARS-CoV-2.
JCI Insight. 2021 Mar 8;6(5):145785. doi: 10.1172/jci.insight.145785.
7
Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody.
Nature. 2020 Jul;583(7815):290-295. doi: 10.1038/s41586-020-2349-y. Epub 2020 May 18.
10
Structures of Human Antibodies Bound to SARS-CoV-2 Spike Reveal Common Epitopes and Recurrent Features of Antibodies.
Cell. 2020 Aug 20;182(4):828-842.e16. doi: 10.1016/j.cell.2020.06.025. Epub 2020 Jun 24.

引用本文的文献

1
SALM: Sequence-Structure Pre-trained Large Language Model for Comprehensive Antibody Representation Learning.
Research (Wash D C). 2025 Aug 19;8:0721. doi: 10.34133/research.0721. eCollection 2025.
2
PdPANA: phagemid display as peptide array for neutralizing antibodies, an engineered vaccine candidate against COVID-19.
Front Syst Biol. 2024 Jun 17;4:1309891. doi: 10.3389/fsysb.2024.1309891. eCollection 2024.
3
Optimizing the breadth of SARS-CoV-2-neutralizing antibodies in vivo and in silico.
Hum Vaccin Immunother. 2025 Dec;21(1):2526873. doi: 10.1080/21645515.2025.2526873. Epub 2025 Jul 21.
4
B Cell Epitope Mapping by High-Density Competition ELISAs.
Methods Mol Biol. 2025;2937:375-391. doi: 10.1007/978-1-0716-4591-8_21.
6
Focused learning by antibody language models using preferential masking of non-templated regions.
Patterns (N Y). 2025 Apr 25;6(6):101239. doi: 10.1016/j.patter.2025.101239. eCollection 2025 Jun 13.
7
Bio-Inspired Mamba for Antibody-Antigen Interaction Prediction.
Biomolecules. 2025 May 26;15(6):764. doi: 10.3390/biom15060764.
8
Innate immunity, therapeutic targets and monoclonal antibodies in SARS-CoV-2 infection.
PeerJ. 2025 Jun 20;13:e19462. doi: 10.7717/peerj.19462. eCollection 2025.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验