Suppr超能文献

巩膜胶原纤维的放射状排列在视神经头生物力学中的作用。

Role of radially aligned scleral collagen fibers in optic nerve head biomechanics.

机构信息

Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA.

Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.

出版信息

Exp Eye Res. 2020 Oct;199:108188. doi: 10.1016/j.exer.2020.108188. Epub 2020 Aug 14.

Abstract

Collagen fibers organized circumferentially around the canal in the peripapillary sclera are thought to provide biomechanical support to the sensitive tissues within the optic nerve head (ONH). Recent studies have demonstrated the existence of a family of fibers in the innermost sclera organized radially from the scleral canal. Our goal was to determine the role of these radial fibers in the sensitivity of scleral canal biomechanics to acute increases in intraocular pressure (IOP). Following the same general approach of previous parametric sensitivity studies, we created nonlinear generic finite element models of a posterior pole with various combinations of radial and circumferential fibers at an IOP of 0 mmHg. We then simulated the effects of normal and elevated IOP levels (15 and 30 mmHg). We monitored four IOP-induced geometric changes: peripapillary sclera stretch, scleral canal displacement, lamina cribrosa displacement, and scleral canal expansion. In addition, we examined the radial (maximum tension) and through-thickness (maximum compression) strains within the ONH tissues. Our models predicted that: 1) radial fibers reduced the posterior displacement of the lamina, especially at elevated IOP; 2) radial fibers reduced IOP-induced radial strain within the peripapillary sclera and retinal tissue; and 3) a combination of radial and circumferential fibers maintained strains within the ONH at a level similar to those conferred by circumferential fibers alone. In conclusion, radial fibers provide support for the posterior globe, additional to that provided by circumferential fibers. Most importantly, a combination of both fiber families can better protect ONH tissues from excessive IOP-induced deformation than either alone.

摘要

被认为为视神经头(ONH)内敏感组织提供生物力学支撑的是围绕在视盘周围巩膜管的胶原纤维。最近的研究表明,在最内层巩膜中存在一组纤维,这些纤维从巩膜管呈放射状排列。我们的目标是确定这些放射状纤维在巩膜管生物力学对急性眼内压(IOP)升高的敏感性中的作用。在遵循之前参数敏感性研究的相同总体方法的基础上,我们创建了具有不同组合的放射状和周向纤维的后极非线性通用有限元模型,IOP 为 0mmHg。然后,我们模拟了正常和升高的 IOP 水平(15 和 30mmHg)的影响。我们监测了四个由 IOP 引起的几何变化:视盘周围巩膜拉伸、巩膜管位移、筛板位移和巩膜管扩张。此外,我们还检查了视神经头组织内的放射状(最大张力)和贯穿厚度(最大压缩)应变。我们的模型预测:1)放射状纤维减少了筛板的后向位移,尤其是在 IOP 升高时;2)放射状纤维减少了 IOP 引起的视盘周围巩膜和视网膜组织的径向应变;3)放射状纤维和周向纤维的组合使视神经头组织内的应变保持在与仅由周向纤维赋予的相似水平。总之,除了周向纤维提供的支撑外,放射状纤维还为后眼球提供了支撑。最重要的是,两种纤维家族的组合可以比单独一种更好地保护视神经头组织免受过度 IOP 引起的变形。

相似文献

1
Role of radially aligned scleral collagen fibers in optic nerve head biomechanics.
Exp Eye Res. 2020 Oct;199:108188. doi: 10.1016/j.exer.2020.108188. Epub 2020 Aug 14.
2
Peripapillary sclera architecture revisited: A tangential fiber model and its biomechanical implications.
Acta Biomater. 2018 Oct 1;79:113-122. doi: 10.1016/j.actbio.2018.08.020. Epub 2018 Aug 21.
3
Factors influencing optic nerve head biomechanics.
Invest Ophthalmol Vis Sci. 2005 Nov;46(11):4189-99. doi: 10.1167/iovs.05-0541.
4
Finite element modeling of the human sclera: influence on optic nerve head biomechanics and connections with glaucoma.
Exp Eye Res. 2011 Jul;93(1):4-12. doi: 10.1016/j.exer.2010.09.014. Epub 2010 Sep 29.
5
Finite element modeling of optic nerve head biomechanics.
Invest Ophthalmol Vis Sci. 2004 Dec;45(12):4378-87. doi: 10.1167/iovs.04-0133.
6
Collagen microstructural factors influencing optic nerve head biomechanics.
Invest Ophthalmol Vis Sci. 2015 Mar 3;56(3):2031-42. doi: 10.1167/iovs.14-15734.
7
IOP-induced regional displacements in the optic nerve head and correlation with peripapillary sclera thickness.
Exp Eye Res. 2020 Nov;200:108202. doi: 10.1016/j.exer.2020.108202. Epub 2020 Aug 27.

引用本文的文献

2
Multiscale analysis of equatorial sclera anisotropy: Revealing discrepancies in fiber orientation and mechanical properties.
Sci Adv. 2025 Jul 11;11(28):eadp8631. doi: 10.1126/sciadv.adp8631. Epub 2025 Jul 9.
3
Integer topological defects offer a methodology to quantify and classify active cell monolayers.
Nat Commun. 2025 Mar 12;16(1):2452. doi: 10.1038/s41467-025-57783-w.
4
Lamina Cribrosa Insertions Into the Sclera Are Sparser, Narrower, and More Slanted in the Anterior Lamina.
Invest Ophthalmol Vis Sci. 2024 Apr 1;65(4):35. doi: 10.1167/iovs.65.4.35.
5
Fibrous finite element modeling of the optic nerve head region.
Acta Biomater. 2024 Feb;175:123-137. doi: 10.1016/j.actbio.2023.12.034. Epub 2023 Dec 24.
6
Direct measurements of collagen fiber recruitment in the posterior pole of the eye.
Acta Biomater. 2024 Jan 1;173:135-147. doi: 10.1016/j.actbio.2023.11.013. Epub 2023 Nov 14.
7
Ocular Biomechanics and Glaucoma.
Vision (Basel). 2023 Apr 23;7(2):36. doi: 10.3390/vision7020036.
8
A direct fiber approach to model sclera collagen architecture and biomechanics.
Exp Eye Res. 2023 Jul;232:109510. doi: 10.1016/j.exer.2023.109510. Epub 2023 May 17.
9
Who bears the load? IOP-induced collagen fiber recruitment over the corneoscleral shell.
Exp Eye Res. 2023 May;230:109446. doi: 10.1016/j.exer.2023.109446. Epub 2023 Mar 18.
10
Comparing Acute IOP-Induced Lamina Cribrosa Deformations Premortem and Postmortem.
Transl Vis Sci Technol. 2022 Dec 1;11(12):1. doi: 10.1167/tvst.11.12.1.

本文引用的文献

1
Collagen fiber interweaving is central to sclera stiffness.
Acta Biomater. 2020 Sep 1;113:429-437. doi: 10.1016/j.actbio.2020.06.026. Epub 2020 Jun 23.
2
A Mesh-Free Approach to Incorporate Complex Anisotropic and Heterogeneous Material Properties into Eye-Specific Finite Element Models.
Comput Methods Appl Mech Eng. 2020 Jan 1;358. doi: https://doi.org/10.1016/j.cma.2019.112654. Epub 2019 Oct 1.
3
The inflation response of the human lamina cribrosa and sclera: Analysis of deformation and interaction.
Acta Biomater. 2020 Apr 1;106:225-241. doi: 10.1016/j.actbio.2020.01.049. Epub 2020 Feb 8.
4
A neuroglia-based interpretation of glaucomatous neuroretinal rim thinning in the optic nerve head.
Prog Retin Eye Res. 2020 Jul;77:100840. doi: 10.1016/j.preteyeres.2020.100840. Epub 2020 Jan 23.
6
Scleral structure and biomechanics.
Prog Retin Eye Res. 2020 Jan;74:100773. doi: 10.1016/j.preteyeres.2019.100773. Epub 2019 Aug 11.
7
Characterizing the Collagen Network Structure and Pressure-Induced Strains of the Human Lamina Cribrosa.
Invest Ophthalmol Vis Sci. 2019 Jun 3;60(7):2406-2422. doi: 10.1167/iovs.18-25863.
8
Microstructure-based numerical simulation of the mechanical behaviour of ocular tissue.
J R Soc Interface. 2019 May 31;16(154):20180685. doi: 10.1098/rsif.2018.0685.
9
Analysis of X-ray scattering microstructure data for implementation in numerical simulations of ocular biomechanical behaviour.
PLoS One. 2019 Apr 1;14(4):e0214770. doi: 10.1371/journal.pone.0214770. eCollection 2019.
10
Mechanical Deformation of Human Optic Nerve Head and Peripapillary Tissue in Response to Acute IOP Elevation.
Invest Ophthalmol Vis Sci. 2019 Mar 1;60(4):913-920. doi: 10.1167/iovs.18-26071.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验