Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA.
Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
Exp Eye Res. 2020 Oct;199:108188. doi: 10.1016/j.exer.2020.108188. Epub 2020 Aug 14.
Collagen fibers organized circumferentially around the canal in the peripapillary sclera are thought to provide biomechanical support to the sensitive tissues within the optic nerve head (ONH). Recent studies have demonstrated the existence of a family of fibers in the innermost sclera organized radially from the scleral canal. Our goal was to determine the role of these radial fibers in the sensitivity of scleral canal biomechanics to acute increases in intraocular pressure (IOP). Following the same general approach of previous parametric sensitivity studies, we created nonlinear generic finite element models of a posterior pole with various combinations of radial and circumferential fibers at an IOP of 0 mmHg. We then simulated the effects of normal and elevated IOP levels (15 and 30 mmHg). We monitored four IOP-induced geometric changes: peripapillary sclera stretch, scleral canal displacement, lamina cribrosa displacement, and scleral canal expansion. In addition, we examined the radial (maximum tension) and through-thickness (maximum compression) strains within the ONH tissues. Our models predicted that: 1) radial fibers reduced the posterior displacement of the lamina, especially at elevated IOP; 2) radial fibers reduced IOP-induced radial strain within the peripapillary sclera and retinal tissue; and 3) a combination of radial and circumferential fibers maintained strains within the ONH at a level similar to those conferred by circumferential fibers alone. In conclusion, radial fibers provide support for the posterior globe, additional to that provided by circumferential fibers. Most importantly, a combination of both fiber families can better protect ONH tissues from excessive IOP-induced deformation than either alone.
被认为为视神经头(ONH)内敏感组织提供生物力学支撑的是围绕在视盘周围巩膜管的胶原纤维。最近的研究表明,在最内层巩膜中存在一组纤维,这些纤维从巩膜管呈放射状排列。我们的目标是确定这些放射状纤维在巩膜管生物力学对急性眼内压(IOP)升高的敏感性中的作用。在遵循之前参数敏感性研究的相同总体方法的基础上,我们创建了具有不同组合的放射状和周向纤维的后极非线性通用有限元模型,IOP 为 0mmHg。然后,我们模拟了正常和升高的 IOP 水平(15 和 30mmHg)的影响。我们监测了四个由 IOP 引起的几何变化:视盘周围巩膜拉伸、巩膜管位移、筛板位移和巩膜管扩张。此外,我们还检查了视神经头组织内的放射状(最大张力)和贯穿厚度(最大压缩)应变。我们的模型预测:1)放射状纤维减少了筛板的后向位移,尤其是在 IOP 升高时;2)放射状纤维减少了 IOP 引起的视盘周围巩膜和视网膜组织的径向应变;3)放射状纤维和周向纤维的组合使视神经头组织内的应变保持在与仅由周向纤维赋予的相似水平。总之,除了周向纤维提供的支撑外,放射状纤维还为后眼球提供了支撑。最重要的是,两种纤维家族的组合可以比单独一种更好地保护视神经头组织免受过度 IOP 引起的变形。