Paleoanthropology Group, Museo Nacional de Ciencias Naturales (CSIC), J.G. Abascal 2, 28006, Madrid, Spain; GIAVAL Research Group, Department of Anatomy and Human Embryology, University of Valencia, Av. Blasco Ibanez, 15, E-46010, Valencia, Spain.
Biological Anthropology, Faculty of Medicine, University of Freiburg, Hebelstr 29, D-79104, Freiburg, Germany.
J Hum Evol. 2020 Oct;147:102854. doi: 10.1016/j.jhevol.2020.102854. Epub 2020 Aug 14.
The skeletal torso is a complex structure of outstanding importance in understanding human body shape evolution, but reconstruction usually entails an element of subjectivity as researchers apply their own anatomical expertise to the process. Among different fossil reconstruction methods, 3D geometric morphometric techniques have been increasingly used in the last decades. Two-block partial least squares analysis has shown great potential for predicting missing elements by exploiting the covariation between two structures (blocks) in a reference sample: one block can be predicted from the other one based on the strength of covariation between blocks. The first aim of this study is to test whether this predictive approach can be used for predicting thorax morphologies from pelvis morphologies within adult Homo sapiens reference samples with known covariation between the thorax and the pelvis. The second aim is to apply this method to Kebara 2 Neandertal (Israel, ∼60 ka) to predict its thorax morphology using two different pelvis reconstructions as predictors. We measured 134 true landmarks, 720 curve semilandmarks, and 160 surface semilandmarks on 60 3D virtual torso models segmented from CT scans. We conducted three two-block partial least squares analyses between the thorax (block 1) and the pelvis (block 2) based on the H. sapiens reference samples after performing generalized Procrustes superimposition on each block separately. Comparisons of these predictions in full shape space by means of Procrustes distances show that the male-only predictive model yields the most reliable predictions within modern humans. In addition, Kebara 2 thorax predictions based on this model concur with the thorax morphology proposed for Neandertals. The method presented here does not aim to replace other techniques, but to rather complement them through quantitative prediction of a virtual 'scaffold' to articulate the thoracic fossil elements, thus extending the potential of missing data estimation beyond the methods proposed in previous works.
骨骼躯干是理解人体形态进化的重要复杂结构,但重建通常需要一定的主观性,因为研究人员将自己的解剖学专业知识应用于该过程。在不同的化石重建方法中,三维几何形态测量技术在过去几十年中得到了越来越多的应用。两部分偏最小二乘分析已显示出通过利用参考样本中两个结构(块)之间的协变来预测缺失元素的巨大潜力:可以根据块之间的协变强度从一个块预测另一个块。本研究的第一个目的是检验这种预测方法是否可以用于预测已知胸腰和骨盆之间存在协变的成年智人参考样本中从骨盆形态到胸廓形态的变化。第二个目的是将这种方法应用于 Kebara 2 尼安德特人(以色列,约 60 千年前),使用两种不同的骨盆重建作为预测因子来预测其胸廓形态。我们在从 CT 扫描中分割出的 60 个 3D 虚拟躯干模型上测量了 134 个真实标志点、720 个曲线半标志点和 160 个表面半标志点。我们对每个块分别进行广义 Procrustes 叠加后,在 H. sapiens 参考样本之间进行了三次两部分偏最小二乘分析,分析了胸廓(块 1)和骨盆(块 2)之间的关系。通过 Procrustes 距离比较这些完整形状空间中的预测结果表明,仅适用于男性的预测模型在现代人类中产生了最可靠的预测结果。此外,基于该模型对 Kebara 2 胸廓的预测结果与为尼安德特人提出的胸廓形态一致。本文所提出的方法并不是要替代其他技术,而是通过对虚拟“支架”进行定量预测来补充这些技术,从而将缺失数据估计的潜力扩展到以前的工作中提出的方法之外。