Suppr超能文献

将超细MoO限制在碳基质中可实现混合锂离子和锂金属存储。

Confining Ultrafine MoO in a Carbon Matrix Enables Hybrid Li Ion and Li Metal Storage.

作者信息

Yao Yao, Chen Ziang, Yu Ruohan, Chen Qiang, Zhu Jiexin, Hong Xufeng, Zhou Liang, Wu Jinsong, Mai Liqiang

机构信息

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.

Nanostructure Research Centre (NRC), Wuhan University of Technology, Wuhan 430070, China.

出版信息

ACS Appl Mater Interfaces. 2020 Sep 9;12(36):40648-40654. doi: 10.1021/acsami.0c10833. Epub 2020 Aug 25.

Abstract

Poor cycle and rate performance caused by volume effects and sluggish kinetics is the main bottleneck for most lithium-ion battery (LIB) anode materials run on the conversion reaction. Although nanostructure engineering has shown to be an effective method to reduce the undesirable volume effects, cycling instability usually remains in nanostructured electrodes owning to particle aggregation in discharge and loss of active materials in charge. Here, to make these kinds of materials practical, we have developed a structure of ultrafine MoO nanoparticles (<3 nm) confined by a conductive carbon nanosheet matrix (MoO/C). Instead of running on the conversion mechanism, the Li storage in the MoO/C composite is through a two-step mechanism in discharge: intercalation followed by the formation of metallic Li, acting as a hybrid host for both Li ion intercalation and metallic Li plating. The Li-storage mechanism has been revealed by X-ray diffraction analysis and scanning transmission electron microscopy with corresponding electron energy loss spectrum analysis, which explains the natural origin of such high capacity along with good cyclability. This unique MoO/C structure exhibits an excellent discharge capacity (810 mAh g at 200 mA g) and cyclability (75% capacity retention over 1000 cycles). The carbon sheet plays a vital role in both a conductive network and a structure supporter with a robust confining effect that keeps the size of MoO uniformly under 3 nm even after high-temperature calcination. Our finding provides insights for the design of next-generation LIB anode materials with high capacity and longevity.

摘要

由体积效应和缓慢动力学导致的循环性能和倍率性能不佳,是大多数基于转化反应运行的锂离子电池(LIB)负极材料的主要瓶颈。尽管纳米结构工程已被证明是减少不良体积效应的有效方法,但由于放电过程中的颗粒聚集和充电过程中活性材料的损失,纳米结构电极中通常仍存在循环不稳定性。在此,为了使这类材料具有实用性,我们开发了一种由导电碳纳米片基质(MoO/C)限制的超细MoO纳米颗粒(<3 nm)结构。MoO/C复合材料中的锂存储不是通过转化机制,而是在放电过程中通过两步机制进行:嵌入后形成金属锂,作为锂离子嵌入和金属锂电镀的混合主体。通过X射线衍射分析、扫描透射电子显微镜以及相应的电子能量损失谱分析揭示了锂存储机制,这解释了这种高容量以及良好循环性能的自然来源。这种独特的MoO/C结构表现出优异的放电容量(在200 mA g下为810 mAh g)和循环性能(在1000次循环中容量保持率为75%)。碳片在导电网络和结构支撑方面都起着至关重要的作用,具有强大的限制作用,即使在高温煅烧后也能将MoO的尺寸均匀地保持在3 nm以下。我们的发现为设计具有高容量和长寿命的下一代LIB负极材料提供了见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验