Schwarze Martin, Tietze Max L, Ortmann Frank, Kleemann Hans, Leo Karl
Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden, 01069 Dresden, Germany.
Center for Advancing Electronics Dresden and Dresden Center for Computational Materials Science, Technische Universität Dresden, 01069 Dresden, Germany.
ACS Appl Mater Interfaces. 2020 Sep 9;12(36):40566-40571. doi: 10.1021/acsami.0c04380. Epub 2020 Aug 26.
The air sensitivity of n-doped layers is crucial for the long-term stability of organic electronic devices. Although several air-stable and highly efficient n-dopants have been developed, the reason for the varying air sensitivity between different n-doped layers, in which the n-dopant molecules are dispersed, is not fully understood. In contrast to previous studies that compared the air stability of doped films with the energy levels of neat host or dopant layers, we trace back the varying degree of air sensitivity to the energy levels of integer charge transfer states (ICTCs) formed by host anions and dopant cations. Our data indicate a universal limit for the ionization energy of ICTCs above which the n-doped semiconductors are air-stable.
n型掺杂层的空气敏感性对于有机电子器件的长期稳定性至关重要。尽管已经开发出了几种空气稳定且高效的n型掺杂剂,但对于不同n型掺杂层(其中n型掺杂剂分子分散在其中)之间空气敏感性变化的原因,尚未完全理解。与之前将掺杂薄膜的空气稳定性与纯主体或掺杂剂层的能级进行比较的研究不同,我们将空气敏感性的变化程度追溯到由主体阴离子和掺杂剂阳离子形成的整数电荷转移态(ICTCs)的能级。我们的数据表明,ICTCs的电离能存在一个普遍的极限,高于该极限时,n型掺杂半导体具有空气稳定性。