Suppr超能文献

胶束嵌入多相蛋白水凝胶中,可实现高效且耐空气三重态融合上转换,使用重原子和自旋轨道电荷转移敏化剂。

Micelles Embedded in Multiphasic Protein Hydrogel Enable Efficient and Air-Tolerant Triplet Fusion Upconversion with Heavy-Atom and Spin-Orbit Charge-Transfer Sensitizers.

机构信息

Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States.

Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, Connecticut 06269, United States.

出版信息

ACS Appl Mater Interfaces. 2020 Sep 2;12(35):39293-39303. doi: 10.1021/acsami.0c11202. Epub 2020 Aug 19.

Abstract

The applications of triplet-triplet annihilation-based photon upconversion (TTA-UC) in solar devices have been limited by the challenges in designing a TTA-UC system that is efficient under aerobic conditions. Efficient TTA-UC under aerobic conditions is typically accomplished by using soft matter or solid-state media, which succeed at protecting the triplet excited states of upconverters (sensitizer and annihilator) from quenching by molecular oxygen but fail at preserving their mobility, thus limiting the TTA-UC efficiency (Φ). We showcase a protein/lipid hydrogel that succeeded in doing both of the above due to its unique multiphasic design, with a high Φ of 19.0 ± 0.7% using a palladium octaethylporphyrin sensitizer. This hydrogel was made via an industrially compatible method using low-cost and eco-friendly materials: bovine serum albumin (BSA), sodium dodecyl sulfate (SDS), and water. A dense BSA network provided oxygen protection while the encapsulation of upconverters within a micellar SDS environment preserved upconverter mobility, ensuring near-unity triplet energy transfer efficiency. In addition to heavy atom-containing sensitizers, several completely organic, spin-orbit charge-transfer intersystem crossing (SOCT-ISC) Bodipy-based sensitizers were also studied; one of which achieved a Φ of 3.5 ± 0.2%, the only reported SOCT-ISC-sensitized Φ in soft matter to date. These high efficiencies showed that our multiphasic design was an excellent platform for air-tolerant TTA-UC and that it can be easily adapted to a variety of upconverters.

摘要

三重态-三重态湮灭上转换(TTA-UC)在太阳能器件中的应用受到了在有氧条件下设计高效 TTA-UC 系统的挑战限制。在有氧条件下,高效的 TTA-UC 通常通过使用软物质或固态介质来实现,这些介质成功地保护了上转换器(敏化剂和湮灭剂)的三重激发态免受分子氧的猝灭,但未能保持其迁移率,从而限制了 TTA-UC 的效率(Φ)。我们展示了一种蛋白质/脂质水凝胶,由于其独特的多相设计,在使用钯八乙基卟啉敏化剂时,成功地做到了这两点,其 Φ 值高达 19.0±0.7%。这种水凝胶是通过使用低成本和环保材料的工业兼容方法制成的:牛血清白蛋白(BSA)、十二烷基硫酸钠(SDS)和水。致密的 BSA 网络提供了氧气保护,而上转换器被包裹在胶束 SDS 环境中则保留了上转换器的迁移率,确保了近乎完美的三重态能量转移效率。除了含有重原子的敏化剂外,我们还研究了几种完全有机的、自旋轨道电荷转移系间窜越(SOCT-ISC)Bodipy 敏化剂;其中一种达到了 Φ 值为 3.5±0.2%,这是迄今为止在软物质中报道的唯一的 SOCT-ISC 敏化的 Φ 值。这些高效率表明,我们的多相设计是一种出色的空气耐受 TTA-UC 平台,并且可以轻松适应各种上转换器。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验